

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution unlimited

ANALYSIS AND COMPARISON OF EXTENDED AND
UNSCENTED KALMAN FILTERING METHODS FOR

SPACECRAFT ATTITUDE DETERMINATION

by

Orlando X. Diaz

December 2010

 Thesis Advisor: Marcello Romano
 Second Reader: Hyun-wook Woo

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Analysis and Comparison of Extended and Unscented Kalman Filtering Methods for
Spacecraft Attitude Determination
6. AUTHOR(S) Orlando X. Diaz

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A..

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Two methods of estimating the attitude position of a spacecraft are examined in this thesis: the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF). In particular, the UnScented QUaternion Estimator (USQUE) derived
from [4] is implemented into a spacecraft model. For generalizations about the each of the filters, a simple problem is
initially solved. These solutions display typical characteristics of each filter type. The UKF is very attractive in
spacecraft attitude estimation, given that spacecraft dynamics are highly nonlinear. For nonlinear systems, the UKF is
of particular interest because it uses a carefully selected set of sample points that more accurately map the probability
distribution than the linearization of the standard extended Kalman filter. This leads to faster convergence of the
attitude solution from largely inaccurate initial conditions. The filter created in this thesis is formulated based on
Markley and Crassidis’s work on standard attitude-vector measurements using a gyro-based model for attitude
propagation. From the standard attitude vector measurements, the global attitude parameterization is found and given
by a quaternion, while a generalized three-dimensional attitude representation is used to define the local attitude error.
The multiplicative quaternion-error is then found from the local error. The simulation results indicate that the
unscented filter is more robust than the extended Kalman filter.

15. NUMBER OF
PAGES

135

14. SUBJECT TERMS
Kalman Filter, Attitude Determination, Nano-Satellite, IMU, Gyroscope, Magnetometer, Extended
Kalman Filter, Unscented Kalman Filter, UnScented QUaternion Estimator, USQUE, MEKF, EKF,
UKF, ADCS 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution unlimited

ANALYSIS AND COMPARISON OF EXTENDED AND UNSCENTED KALMAN
FILTERING METHODS FOR SPACECRAFT ATTITUDE DETERMINATION

Orlando X. Diaz
Civilian, National Aeronautics and Space Administration

B.S. Aerospace Engineering, The University of Texas at Austin, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Orlando X. Diaz

Approved by: Marcello Romano
Thesis Advisor

Hyun-wook Woo
Second Reader

Knox Millsaps
Chairman, Department of Mechanical and Aerospace Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Two methods of estimating the attitude position of a spacecraft are examined in this

thesis: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In

particular, the UnScented QUaternion Estimator (USQUE) derived from [4] is

implemented into a spacecraft model. For generalizations about the each of the filters, a

simple problem is initially solved. These solutions display typical characteristics of each

filter type. The UKF is very attractive in spacecraft attitude estimation, given that

spacecraft dynamics are highly nonlinear. For nonlinear systems, the UKF is of

particular interest because it uses a carefully selected set of sample points that more

accurately map the probability distribution than the linearization of the standard extended

Kalman filter. This leads to faster convergence of the attitude solution from largely

inaccurate initial conditions. The filter created in this thesis is formulated based on

Markley and Crassidis’s work on standard attitude-vector measurements using a gyro-

based model for attitude propagation. From the standard attitude vector measurements,

the global attitude parameterization is found and given by a quaternion, while a

generalized three-dimensional attitude representation is used to define the local attitude

error. The multiplicative quaternion-error is then found from the local error. The

simulation results indicate that the unscented filter is more robust than the extended

Kalman filter.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. SHORT OVERVIEW OF ATTITUDE ESTIMATION2
C. RECENT CUBESAT ADCS SYSTEMS ...4

1. Canadian Advanced Nanospace eXperiment (CanX) ADS4
2. AISSat-1 ADS...6
3. Radio Aurora Explorer (RAX) ADS..7

II. GENERAL EXTENDED AND UNSCENTED KALMAN FILTERING
METHODS FOR THE ESTIMATION OF DYNAMIC SYSTEMS9
A. BACKGROUND ..9
B. CONTINUOUS-TIME EXTENDED KALMAN FILTER12
C. DISCRETE-TIME LINEAR AND EXTENDED KALMAN FILTERS ..15
D. UNSCENTED KALMAN FILTER..18
E. IMPLEMENTATION OF EKF AND UKF METHODS USING THE

SIMPLE PENDULUM PROBLEM...25
F. EKF AND UKF ESTIMATION RESULTS USING THE SIMPLE

PENDULUM PROBLEM ...28

III. IMPLEMENTATION OF EKF AND UKF FOR SPACECRAFT
ATTITUDE DETERMINATION...37
A. GENERALIZATIONS ..37
B. ANALYTICAL MODELING AND SETUP FOR ATTITUDE

DETERMINATION SIMULATIONS...37
1. Background ..37
2. Dynamics and Kinematics...38
3. Spacecraft Attitude Disturbance Torques39
4. Spacecraft Sensor and Noise Modeling..40

C. ATTITUDE KINEMATICS FOR QUATERNION ESTIMATION41
D. CRASSIDIS AND MARKLEY’S UNSCENTED QUATERNION

ESTIMATOR (USQUE)..45
1. Initialization..48
2. Calculation of Sigma Points ..48
3. Covariance and Gain Calculations...51
4. Update Routine for States and Error Covariance52

E. IMPLEMENTATION OF THE EXTENDED KALMAN FILTER.........53

IV. COMPARISON OF SIMULATION RESULTS USING EKF AND UKF
FILTERING METHODS..57
A. SIMULATION CONDITIONS...57
B. SIMULATION 1 RESULTS ...57
C. SIMULATION 2 RESULTS ...63
D. DISCUSSION OF RESULTS AGAINST PREVIOUS LITERATURE...69

 viii

V. CONCLUSION ..71
A. SUMMARY ..71
B. FUTURE WORK...71

APPENDIX A – SIMPLE PENDULUM SIMULATION ..73

APPENDIX B – SPACECRAFT ATTITUDE DETERMINATION SIMULATION81

LIST OF REFERENCES..115

INITIAL DISTRIBUTION LIST ...117

 ix

LIST OF FIGURES

Figure 1. Dr. William Pickering, Dr. James Van Allen, and Dr. Wernher Von Braun
hold a model of the Explorer 1 vehicle above their heads. Credit: NASA.......1

Figure 2. CanX-1 Agilent Technologies CMOS Imager...5
Figure 3. Computer Rendering of CanX-2..5
Figure 4. Computer Rendering of AISSat-1, from [7] ..6
Figure 5. Illustration of Extended Kalman filter linearization of nonlinear function

and the related Gaussian distribution...13
Figure 6. Illustration of the unscented Kalman filter sigma-points propagation.............22
Figure 7. Simple Pendulum Problem ..26
Figure 8. Simulink Block Diagram of Simple Pendulum Model27
Figure 9. Angular Errors in EKF with 3σ Error Bounds Simulation 1 (large θ).............29
Figure 10. Angular Errors in UKF with 3σ Error Bounds Simulation 1 (large θ)30
Figure 11. Angular Rate Errors in EKF with 3σ Error Bounds Simulation 1 (large θ)30
Figure 12. Angular Rate Errors in UKF with 3σ Error Bounds Simulation 1 (large θ)31
Figure 13. Moment of Inertia Errors in EKF with 3σ Error Bounds Simulation 1

(large θ) ..32
Figure 14. Moment of Inertia Errors in UKF with 3σ Error Bounds Simulation 1

(large θ) ..32
Figure 15. Angular Errors in EKF with 3σ Error Bounds for Simulation 2 (small θ)33
Figure 16. Angular Errors in UKF with 3σ Error Bounds for Simulation 2 (small θ)34
Figure 17. Angular Rate Errors in EKF with 3σ Error Bounds for Simulation 2

(small θ) ...34
Figure 18. Angular Rate Errors in UKF with 3σ Error Bounds for Simulation 2

(small θ) ...35
Figure 19. Moment of Inertia Errors in EKF with 3σ Error Bounds for Simulation 2

(small θ) ...35
Figure 20. Moment of Inertia Errors in UKF with 3σ Error Bounds for Simulation 2

(small θ) ...36
Figure 21. Attitude Dynamics and Kinematics Simulink Block38
Figure 22. Unscented Quaternion Estimator Flow Chart ..46
Figure 23. Unscented Kalman Filter Block - Level 1 ...47
Figure 24. Unscented Kalman Filter Block - Level 2 ...48
Figure 25. Extended Kalman Filter Flow Chart ..54
Figure 26. Simulation 1 Quaternion Attitude Error with 3σ Bounds for EKF..................58
Figure 27. Simulation 1 Generalized Rodriguez Parameter Attitude Error with for 3σ

Bounds for UKF...59
Figure 28. Simulation 1 EKF Bias Errors with 3σ Bounds...60
Figure 29. Simulation 1 UKF Bias Errors with 3σ Bounds ..61
Figure 30. Comparison of EKF and UKF Normalized Attitude Errors for

Simulation 1 ...62
Figure 31. Comparison of EKF and UKF Normalized Bias Errors for Simulation 163
Figure 32. Simulation 2 Quaternion Attitude Error with 3σ Bounds for EKF..................64

 x

Figure 33. Simulation 2 Generalized Rodriguez Parameter Attitude Error with for 3σ
Bounds for UKF...65

Figure 34. Simulation 2 EKF Bias Errors with 3σ Bounds...66
Figure 35. Simulation 2 UKF Bias Errors with 3σ Bounds ..67
Figure 36. Comparison of EKF and UKF Normalized Attitude Errors for

Simulation 2 ...68
Figure 37. Comparison of EKF and UKF Normalized Bias Errors for Simulation 269
Figure 38. Norm of Attitude Errors, from [4] ...70

 xi

LIST OF TABLES

Table 1. Standard Symbols of Kalman Filtering, from [10] ..10
Table 2. Special State Space Notation, from [10]..11
Table 3. Continuous-Time Extended Kalman Filter, from [9]15
Table 4. Discrete-Time Linear Kalman Filter, from [9] ..18
Table 5. Unscented Kalman Filter, from [9]..25
Table 6. Summary of Gyro Noise Coefficients, from [4] ..40
Table 7. Description of Inputs and Outputs for UKF Block - Level 147
Table 8. Summary of EKF Equations, from [9]...55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

1-U Refers the 1-CubeSat standard of 10 cm x 10 cm x 10 cm

3-U Refers to the 3-CubeSat standard of 10 cm x 10 cm x 30 cm

ADCS Attitude Determination and Control System

ADS Attitude Determination System

CanX The Canadian Advanced Nanospace eXperiment

EKF Extended Kalman Filter

GPS Global Positioning System

IMU Intertial Measurement Unit

NACL Nanosatellite Advanced Concepts Laboratory

NASA National Aeronautics and Space Administration

NPS The Naval Postgraduate School

ORS Office of Responsive Space

QUEST QUaternion EStimator

RAX Radio Aurora Explorer

UKF Unscented Kalman Filter

USQUE UnScented QUaternion Estimator

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The completion of this program would not have been possible without the help of

others. I would like to acknowledge the National Aeronautics and Space Administration,

particularly NASA Ames Research Center Director Dr. S. Pete Worden and Engineering

Director Pete Klupar, for supporting me financially and ensuring that my education gets

put to good use when I return.

 I would also like to thank the following individuals for their invaluable assistance

in the completion of this thesis:

Professor Dr. Marcello Romano for allowing me to be part of his research.

Dr. Hyun-wook Woo, without your help and support I would have progressed

endlessly without direction. Your help was greatly appreciated.

Ms. Karen Andersen for helping me find this wonderful opportunity of a free

education and navigating the possibly endless road of government politics. This

simply would not have been possible without your dedication and perseverance.

Ms. Trang Luong for her support and patience during these two years while

commuting between San Jose and Monterey, always reminding me what’s most

important in life, each other. The future always seems brighter when you can see

yourself in it with someone special.

My classmates, Space Systems Engineering and Operations Students 2010, for

allowing me to be a part of the military community for these short years. The long

nights of studying are not so terrible when you are in the company of heroes. A bit

cliché, but true. I hope all the best for your future endeavors.

Lastly, to Avilio Peña and Juan Garces Diaz who both passed away during my time

here, for teaching me the meaning of service and the importance of education at an

early age.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

In August of 1960, the United States Air Force and the Central Intelligence

Agency successfully launched the world’s first reconnaissance satellite, Corona. The

imaging resolution was 8 meters and taken on film. The program lasted for 12 years, and

ushered in the era of space-based reconnaissance and intelligence gathering that would be

iconic of the Cold War. Since the beginning of spacecraft building, organizations have

prized themselves on pushing the envelopes of technology. Programs such as NASA’s

Explorer, TIROS, and Pioneer later proved that the U.S. was investing heavily on space

technologies.

I

Figure 1. Dr. William Pickering, Dr. James Van Allen, and Dr. Wernher Von Braun
hold a model of the Explorer 1 vehicle above their heads. Credit: NASA

Historically, the building of spacecraft has been a lengthy process, often taking

many years or even decades. Recently, however, a new methodology for building

spacecraft has transpired. Organizations such as The Office of Responsive Space (ORS)

 2

have been created to change this expensive and lengthy process into one that focuses on

providing a "good enough" service in a timely manner [1]. This push for faster programs

has also led areas of the industry to build smaller systems in attempts to utilize the

leftover-over payload mass of launch vehicles. This is more commonly referred to as a

"secondary payload." The industry push combined with the emerging university

nanosatellite community has created an influx of new commercialism for space-based

hardware.

One of the limiting technologies in the small spacecraft arena is attitude

determination and control systems (ADCS). While currently there is an increased interest

in this area, a limited number of complete solutions in a 3U or 1U-class nanosatellite

have been demonstrated on-orbit. Many proposed solutions are also not affordable to this

community. While companies like Boeing, Honeywell, and Sinclair are working on

hardware solutions, the problem of attitude determination and control can be attacked

from both sides. That is to say, as the hardware is being developed, both academic and

commercial institutions can focus their resources on the optimal estimation and control

theory problems. The lack of an affordable hardware should not inhibit willing parties to

develop solutions and methods for the small spacecraft ADCS problem.

B. SHORT OVERVIEW OF ATTITUDE ESTIMATION

One of the most common estimation techniques that has been widely used for

various dynamics systems is the Kalman filter. While the filter was initially designed for

linear systems, variations of this filter have been developed in particular for nonlinear

systems. The extended Kalman filter can be used on nonlinear systems and is based on

linearizing the system dynamics. While this is potentially attractive for the nonlinear

spacecraft attitude control problem there are several associated with the nonlinearization

[2].

While the EKF has proven to be a popular tool for nonlinear estimation, it

continues to endure some fundamental issues inherent in the linearization process, which

can be the potential cause of divergence. A later development for nonlinear estimation

was developed by Julier and Uhlmann and is called the “unscented” Kalman filter [3].

 3

The UKF is “founded on the intuition that it is easier to approximate a probability

distribution than it is to approximate an arbitrary nonlinear function or transformation

[3]." The UKF successfully avoids the EKF linearization step by introducing a set of

sample points that capture the higher order statics of the system. Finally, the UKF

method has been developed to estimate the quaternions associated with the attitude of a

spacecraft [4]. The numerical simulations presented in these studies have illustrated the

superior performance of the UKF in this context.

The primary goal of this thesis is to develop and verify estimation algorithms and

simulation code for a spacecraft attitude determination system (ADS). In particular, the

two estimation methods that are compared for determining the attitude are the extended

Kalman filter (EKF) and the unscented Kalman filter (UKF). Each filter is evaluated

based on error computation time. The inherent linearity and nonlinearity of each type of

filter is examined by choosing related problems that highlight issues in trying to use a

linear filter (EKF) to solve a nonlinear problem. To do this, two separate simulations

codes were designed. These simulation codes include an accurate spacecraft model where

torque disturbances, Earth physics, and orbital mechanics are accounted for, as well as

sensor models of an inertial measurement unit and magnetometer.

A simplified problem was used to verify the behavior of both estimation methods

on linear and nonlinear dynamics. For this, the simple pendulum was used as a way to

show how each filter can be used to estimate the states of a given dynamic problem.

After this problem was worked, these filters were used as analogs against a simulated

spacecraft model. Primarily focusing on the UKF, this thesis discusses the differences

between the two filters and focuses on the benefits of using nonlinear estimation. It is

widely known that there are many benefits to nonlinear estimation. The UKF is very

attractive in spacecraft attitude estimation, given that spacecraft dynamics are highly

nonlinear. This thesis highlights these benefits while solving both the EKF and UKF

spacecraft attitude estimation problem. While previous theses discussed the nuances of

characterizing these types of sensors for inclusion in the simulation [4], this paper will

focus on the estimation methods as they apply to attitude determination.

 4

C. RECENT CUBESAT ADCS SYSTEMS

Several spacecraft that have implemented ADCS systems into the small CubeSat

standard. This section discusses three of these, which include the following:

• Canadian Advanced Nanospace eXperiment (CanX) –The University of

Toronto Institute for Aerospace Studies Space Flight Laboratory (UTIAS

SLF)

• AISSat-1 – The University of Toronto Institute for Aerospace Studies

Space Flight Laboratory (UTIAS SLF)

• Radio Aurora eXperiment (RAX) – The University of Michigan

1. Canadian Advanced Nanospace eXperiment (CanX) ADS

The Canadian Advanced Nanospace eXperiment (CanX) program is run by the

University of Toronto Institute for Aerospace Studies (UTIAS) Space Flight Laboratory.

CanX-1 launched on June 2003 from Plesetsk, Russia, and was a 1-U CubeSat that

consisted of several ADS hardware components. The primary mission of CanX-1 was to

demonstrate the several experimental ADS components. The CanX-1 ADS package

consisted of a CMOS Imager for ground-controlled horizon sensing and star tracking,

active three-axis magnetic stabilization and a Global Positioning System (GPS) receiver

that was modified to work in low Earth orbit. Figure 2 shows a picture of the CanX

CMOS imager used for star tracking [6].

 5

Figure 2. CanX-1 Agilent Technologies CMOS Imager

 CanX-2, which launched in April 2008, uses many of the same types of ADS

systems. The CanX-2 ADS uses a suite of sun sensors and a three-axis magnetometer.

Both CanX-1 and CanX-2 use a standard extended Kalman filter to estimate the attitude

of the spacecraft.

Figure 3. Computer Rendering of CanX-2

 6

2. AISSat-1 ADS

 AISSat-1 is a 6-kg Norwegian nanosatellite, being constructed on behalf of

government of Norway by UTIAS/SFL, whose primary mission is to investigate the

feasibility and performance of a spacecraft-based Automatic Identification System (AIS)

sensor in low-Earth orbit as a means of tracking maritime assets. AISSat-1 is intended as

both a research and development platform, and a demonstration mission for a larger

operational capability.

Figure 4. Computer Rendering of AISSat-1, from [7]

 A full 3-axis attitude determination and control system provides attitude

stabilization and fine pointing for AISSat-1. The satellite is able to point in either and

inertial orientations, or an orbit-frame-fixed orientation, including on nadir. Attitude

sensors consist of six sun sensors, a magnetometer and rate gyros. Three orthogonally

mounted reaction wheels and three magnetorquer coils controls the actuation of the

satellite. The magnetorquer is used for de-tumbling and momentum dumping while the

reaction wheels provide fine attitude pointing capability. The attitude control system is

able to maintain several degree level pointing accuracy and stability over the course of

the entire orbit, including eclipse. For attitude estimation, this spacecraft also

implemented an extended Kalman filter [7].

 7

3. Radio Aurora Explorer (RAX) ADS

The Radio Aurora Explorer (RAX) spacecraft, currently being developed by The

University of Michigan is a 3U CubeSat, which will also implement and attitude

determination system. The primary scientific objective of the Radio Aurora Explorer

(RAX) mission is to understand the microphysics of plasma instabilities that lead to field-

aligned irregularities (FAI) of electron density in the polar lower (80–400 km)

ionosphere. For attitude control, an inertial measurement unit in conjunction with sun

sensors and magnetometers will observe the time it takes the passive magnetic attitude

control system to de-tumble the spacecraft after deployment. This system will implement

a continuous-discrete extended Kalman filter. They will implement a 13 state filter,

which will consist of 3 position, 3 velocity, 4 quaternions, and 3 angular rates. The team

will implement the QUaternion ESTimator (QUEST) method developed by Shuster and

Oh [8]. Literature describes the QUEST method as computationally expensive; however,

the information will be gathered on orbit and processed on the ground to eliminate

computational constraints on the filtering process. Some of the ADS hardware will

include six 3-axis magnetometers, nine sun sensors and an inertial measurement unit,

which will consist of a 3-axis gyroscope.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. GENERAL EXTENDED AND UNSCENTED KALMAN
FILTERING METHODS FOR THE ESTIMATION OF

DYNAMIC SYSTEMS

A. BACKGROUND

Accurate attitude knowledge is essential for many spacecraft missions. Kalman

filtering has been widely known since the 1960s as a method for filtering out noise in a

given measurement. Theoretically, the Kalman filter is a sequential optimal estimator for

what is called the linear-quadratic problem, which is the problem of estimating the

instantaneous "state" of a linear dynamic system including its uncertainty--by using

measurements linearly related to the state corrupted by white noise [10]. For attitude

determination, several types of Kalman filters have been developed over the years. This

section describes two basic types of Kalman filters, the extended Kalman filter (EKF) and

the unscented Kalman filter (UKF). There have been many technical papers written on

Kalman filtering for state estimation [2][3]. This chapter will start the discussion with

the continuous-time Kalman filter as a base line. Several textbooks use a variety of

nomenclature to describe this estimation process. As a standard, the following tables

define the notation used in this thesis. These tables are also consistent with [9] and [10].

 10

Table 1. Standard Symbols of Kalman Filtering, from [10]

Symbols Symbol Definition

F
Dynamic coefficient matrix (state matrix) of a continuous linear

differential equation defining a dynamic system

G
Coupling matrix between random process noise and the state of a dynamic

system

H

Measurement sensitivity matrix defining the linear relationship between

the state of the dynamic system and measurements that can be made, (also

known as a coefficient matrix [9])

K Kalman gain matrix

P Covariance matrix of state estimation uncertainty

Q
Covariance matrix of process noise in the system state dynamics also

called the process noise covariance

R
Covariance matrix of observational (measurement) uncertainty also called

the measurement noise covariance

x State vector

y Vector (or scalar) of measured values.

Φ State transition matrix of a discrete dynamic system

 11

Table 2. Special State Space Notation, from [10]

Symbols Symbol Definition

()kx i
The i-th component of the vector x, or the i-th element of the sequence. The
sub-index k refers to the sequence of propagation as it occurs in the filtering
process. i.e. k+1 can be referred to as the “update” term that is determined
from the same term calculated previously. 1()kx i+ = ()kx i noise+

x̂ An estimate of the value of x.

ˆ kx − A priori estimate of the kx , conditioned on all prior measurements except
the one at time kt

ˆ kx + A posteriori estimate of the x , conditioned on all available measurements at
time kt

y A measurement of some quantity we can estimate to the state vector from.

x Derivative of x with respect to time

The Kalman filter uses a parametric characterization of the probability

distribution of its estimation errors in determining the optimal filtering gains, and it is the

probability distribution that can be used for assessing its performance as a function of the

“design parameters” of an estimation system [10]. Some of these can include:

• the types of sensors used,

• the locations and orientations of the various sensor types with respect to

the system to be estimated,

• the allowable noise characteristics of the sensors,

• the data sampling rates for the various sensor types, and most importantly,

• the level of model simplification to reduce implementation requirements.

 12

B. CONTINUOUS-TIME EXTENDED KALMAN FILTER

For nonlinear systems, such as spacecraft dynamics, the extended Kalman filter

(EKF) has been previously proposed in literature and used on-board many spacecraft [2].

In the EKF, the state transition and observation models do not need to be linear functions

representing the state, granted they are differentiable. Given that a vast majority of

nonlinear problems can be described with differentiable nonlinear functions, the

Continuous-Time EKF can often be used. The Continuous-Time EKF is very similar to

the Continuous-Time Linear Kalman filter [9]. The derivation of the Continuous-Time

EKF starts with the continuous non-linear system model below:

 () ((), (),) () ()t t t t t t= +x f x u G w 2.1

 () ((),) ()t t t t= +y h x v 2.2

where it is important to note that f(x(t), u(t),t) represents nonlinear continuous function or

the state transition model, while G(t) and w(t) represent the coupling matrix and

continuous-time covariance respectively. For Equation 2.2, ()ty represents the measured

nonlinear observed model using a continuous function h(x(t),t) plus the continuous-time

covariance, v(t).

 The inherent linearization process can cause the filter to diverge, as the Gaussian

input does not necessarily produce a Gaussian output [9]. To continue, we must assume

that, for our purposes, a linear representation of our non-linear system will suffice. For

example, this method can certainly be used for functions where small angle

approximation is valid. Examples of the limitations are discussed in detail in Section F.

For the EKF, we must also assume that the true state of the system is sufficiently close to

the estimated state. Therefore, the error dynamics can be reasonably approximated by a

linearized first order Taylor series expansion. The first order expansion of ((), (),)t t tf x u

about a nominal state ()tx becomes:

 13

()

((), (),) ((), (),) [() ()]
t

t t t t t t t t∂
≅ + −

∂ x

ff x u f x u x x
x

 2.3

where ()tx is close to ()tx . Similarly, the output in Equation 2.3 becomes [9]:

()

((),) ((),) [() ()]
t

t t t t t t∂
≅ + −

∂ x

hh x h x x x
x

 2.4

Here the EKF solves this problem by calculating the Jacobians of f and h around the

estimated state, which in turn yields a trajectory model function centered around this

state. Figure 5 shows this graphically [11].

Figure 5. Illustration of Extended Kalman filter linearization of nonlinear function
and the related Gaussian distribution.

 To find the estimate of the state, the extended Kalman filter continues with

assumption made earlier, that ˆ() ()t t=x x . Thus, the expectation of both Equations 2.3

and 2.4 gives the following equation, where E represents the conditional mean or

expectation [9].

 14

 { } ˆ((), (),) ((), (),)E t t t t t t=f x u f x u 2.5

 { } ˆ((),) ((),)E t t t t=h x h x 2.6

Therefore, the extended Kalman filter for the state and output estimate is given by the

following two equations [9].

 []ˆ ˆ ˆ() ((), (),) () () ((),)t t t t K t t t t= + −x f x u y h x 2.7

 ˆ ˆ() ((),)t t t=y h x 2.8

Because the equation of the measurement of the state vector has the same structure as the

linear Kalman filter, we can use the covariance expression shown in Table 3. The

following table summarizes the equations for the continuous-time extended Kalman

filter.

 15

Table 3. Continuous-Time Extended Kalman Filter, from [9]

Model

() ((), (),) () (),
() ((),) ()

t t t t t t
t t t t

= +
= +

x f x u G w
y h x v

Initialize

()
() (){ }

0 0

0 0 0

ˆ ˆ
T

t

P E t t

=

=

x x

x x

Gain 1ˆ() () ((),) ()TK t P t H t t R t−= x

Covariance

() ()

1

ˆ ˆ() ()

ˆ ˆ() ((),) () () ((),)
ˆ() ((),) () ((),) () () () ()

ˆ ˆ, , ,

T

T T

t t

P t F t t P t P t F t t
P t H t t R t H t t P t G t Q t G t

F t H t

−

= +

− +

∂ ∂
≡ ≡
∂ ∂x x

x x
x x
f hx x
x x

Estimate []ˆ ˆ ˆ() ((), (),) () () ((),)t t t t K t t t t= + −x f x u y h x

C. DISCRETE-TIME LINEAR AND EXTENDED KALMAN FILTERS

 While understanding the basics of the continuous-time extended Kalman filter is

valuable in the sense that it can often be used to solve entire solutions analytically,

implementation of this is not practical. In most cases, the control system is responding to

different given inputs. The use of real-time processing is inevitable in the practical

implementation of estimating dynamic systems. Thus, the continuous-time Kalman filter

must be discretized so that it may be applied to iterative methods. This section describes

how the Kalman filter is derived.

 Derivation of the discrete-time filter and the extended Kalman filter are very

similar. To derive the discrete-time Kalman filter, an assumption must be made that both

the model and measurement are available in discrete form. Here, we can start with the

non-linear "truth" model shown below [9]:

 1k k k k k k k+ =Φ +Γ +ϒx x u w 2.9

 16

 ()k k k kH= +y x v 2.10

where Φ is the state transition matrix, Γ is the control-input matrix that is applied to the

control vector uk, and ϒ is the noise matrix. The definition of Φ , Γ , and ϒ are shown

below.

 F te ΔΦ ≡ 2.11

0

t Fte dt B
Δ⎡ ⎤Γ ≡ ⎢ ⎥⎣ ⎦∫ 2.12

0

t Fte dt G
Δ⎡ ⎤ϒ ≡ ⎢ ⎥⎣ ⎦∫ 2.13

where B and G are the coefficient matrices taken from the continuous system. Again, in

Equations 2.9 and 2.10 wk(t) and vk(t) are assumed to be zero-mean Gaussian white-noise

processes and their covariance's are given by the expectation equations [9]:

 { } 0T
k j

k

k j
E

Q k j

⎧ ≠⎪= ⎨
=⎪⎩

w w 2.14

 { } 0T
k j

k

k j
E

R k j

⎧ ≠⎪= ⎨
=⎪⎩

v v 2.15

 The Qk matrix accounts for the state process noise while the Rk matrix accounts

for the expected measurement noise. These equations imply that the errors are not

correlated forward or backward in time. We can also assume that vk and wk are

uncorrelated so:

 { } 0T
k kE =v w 2.16

Updating the current estimate of the state ˆkx to obtain 1ˆkx + based upon all k+1

measurement subsets assumes that the gain (K) can vary in time. This propagation can

be done using [9]:

 17

 1ˆ ˆk k k k k
− +
+ = Φ +Γx x u 2.17

Furthermore, the updated state is given by:

 ˆ ˆ ˆk k k k k kK H+ − −⎡ ⎤= + −⎣ ⎦x x y x 2.18

where ky is the measurement vector. The gain Kk changes with time properly weighting

the relative confidence of the accuracy of the propagated state verses the measured state.

To find Kk, first the state error and error covariance matrixes must be defined [9]:

 { }T
k k kP E − −≡ x x 2.19

where

 ˆk k k
−≡ −x x x 2.20

Substituting Equations 2.9 and 2.17 into Equation 2.20 and substituting the resulting

equation into Equation 2.19 leads to:

 1
T T

k k k k k k kP P Q− +
+ = Φ Φ + ϒ ϒ 2.21

Because kw and k

+x are uncorrelated the terms { } { } 0T T
k k k kE E+ += =w x x w . To find the

updated error covariance matrix, we can use Equations 2.10 and 2.18. Then substitution

of the resulting equation into Equation 2.20 leads to:

 ()ˆk k k k kP I K H P+ − −⎡ ⎤= −⎣ ⎦x 2.22

To find the gain K, the trace of error covariance matrix kP+ is minimized. Solving gives:

 () () () 1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R
−

− − − − −⎡ ⎤= +⎣ ⎦x x x 2.23

 18

As mentioned previously, the extended Kalman filter and discrete-time Kalman

filter are nearly identical. The only difference between these two are the initial model

equations and the propagation equations. The extended Kalman filter assumes that the

model is a continuous function and thus be differentiable. This is clearly evident in Table

4.

Table 4. Discrete-Time Linear Kalman Filter, from [9]

Model ()
()

1 , ,

, ,
k k k k k k k k

k k k k k k

N Q

H N R
+ = Φ + Γ + ϒ

= +

x x u w w 0

y x v v 0

∼

∼

Initialize ()
() (){ }

0 0

0 0 0

ˆ ˆ
T

t

P E t t

=

=

x x

x x

Gain () () () 1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R
−

− − − − −⎡ ⎤= +⎣ ⎦x x x

Update ()
[]

ˆ ˆ ˆk k k k k k

k k k k

K H

P I K H P

+ − −

+ −

⎡ ⎤= + −⎣ ⎦
= −

x x y x

Propagation 1

1

ˆ ˆk k k k k
T T

k k k k k k kP P Q

− +
+

− +
+

= Φ + Γ

= Φ Φ + ϒ ϒ

x x u

D. UNSCENTED KALMAN FILTER

The inherent issue with propagating Gaussian random variables through a

nonlinear function can also be approached using a technique described as the unscented

transform. While the extended Kalman filter has many applications, and is the most

popular method for nonlinear estimation to date, the unscented Kalman filter (UKF) was

proposed by Julier, Uhlmann, and Durrant-Whyte [12] to overcome the instabilities

associated with the EKF. While the EKF typically works well in the regions where the

first-order Taylor series linearization adequately approximates the nonlinear probably

distribution, a primary area of concern is during the initialization stage, where the

 19

estimated initial state can be far from the true state [9]. The UKF typically involves more

complex computations than the EKF, but has the following advantages:

1. the expected error is lower than the EKF

2. it can be applied to non-differentiable function

3. it avoids the derivation of Jacobian matrices

4. it is valid to higher-order expansions than the standard EKF [4]

 The UKF can be thought of as an extension of the traditional Kalman filter for the

estimation of nonlinear systems that implements the unscented transformation. The

unscented transformation uses a set of sample, or sigma, points that are determined from

the a priori mean and covariance of the state. The sigma points undergo the nonlinear

transformation. Then the a posteriori mean and covariance of the state are determined

from the transformed sigma points. This approach gives the UKF better convergence

characteristics and greater accuracy than the EKF for nonlinear systems [13]. The ability

of the UKF to accurately estimate nonlinearities make it attractive for implementation on

spacecraft as the state and observations are inherently nonlinear. This section describes

the basic derivation of the unscented Kalman filter, while the subsequent sections

describe the implementation of the UKF for attitude determination.

 The derivation of the unscented Kalman filter starts by selecting a nonlinear

system defined by [9]:

 1 (,)k k k kk G+ = +x f x w 2.24

 (,)k k kk= +y h x v 2.25

where xk is the n × 1 state vector and yk is the m × 1 measurement vector. It is

interesting to note that a continuous-time model can also be expressed in the form of

Equation 2.24. Similar to the previous derivations, vk represents the measurement-error

noise while wk describes the white Gaussian process noise with covariances given by

 { }() () () ()TE t Q t tτ δ τ= −w w 2.26

 20

 { }() () () ()TE t R t tτ δ τ= −w v 2.27

 { }() () 0TE t τ =v w 2.28

The covariance matrices of each of these are given by Qk and Rk respectively [4]. The

Kalman filter update equations are rewritten from Table 4 as [3]:

 ˆ ˆk k k kK υ+ −= +x x 2.29
 T

k k k k kP P K P Kυυ+ −= − 2.30

where kυ is the innovations process, given by

 ˆ ˆ(,)k k k k k k kυ − −≡ − = −y y y h x u 2.31

The covariance of the innovations process, kυ is given by kPυυ [4].

 1 1 1

yy
k k kP P Rυυ
+ + += + 2.32

The Kalman gain is computed by the following equation [4].

 -1()xy
k k kK P Pυυ= 2.33

where xy
kP is the cross-correlation matrix between ˆ k

−x , and ˆ k
−y . The cross-correlation is

defined later in the discussion below. To define the propagation equations, the following

sigma points must be computed [4]. The filter starts by augmenting the state vector to L

dimensions in the original state-vector, model noise, and measurement noise where L is

the size of the vector a
kx , or the augmented state defined by Equation 2.37 [9]. The

covariance matrix is similarly augmented and this forms the augmented state estimate

vector shown below.

 21

 2 a

kL columns from Pσ γ← ± 2.34

 ˆ(0)a a

k kχ = x 2.35

 ˆ() ()a a

k k ki iχ σ= + x 2.36

where ˆ a
kx is an augmented state defined by [4]

 1

1

ˆ
ˆ, 0

0

k k
a a
k k k q

k m

x x
w
v

×

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x 2.37

Augmenting the covariance requires the computation of 2(q+l) additional sigma points.

It is important to mention here that q is the dimension of kw , l is the dimension of kv ,

and m is the output dimension. While L is the size of the vector ˆ a
kx , the parameter γ is

given by the following [4].

 Lγ λ= + 2.38

and the composite scaling parameter , λ , is given by

 2()L Lλ α κ= + − 2.39

The constant α, represents the spread of sigma points and is usually set to a small positive

value (e.g., 41 10 1α−× ≤ ≤). There are 2L values for kσ , each representing the

positive and negative values of the square root. The Cholesky method is often used to

find the square root of a matrix. Similar to the EKF, the UKF now propagates these

sigma-points from a Gaussian distribution through a nonlinear function, and recreates a

Gaussian distribution by calculating the mean and covariance of these results [11].

 22

Figure 6. Illustration of the unscented Kalman filter sigma-points propagation

These sigma points are evaluated by:

 1() ((), (), ,)x w
k k k ki i i kχ χ χ+ = f u 2.40

where ()x
k iχ is a vector of the first n elements of ()a

k iχ , and ()w
k iχ is a vector of the next q

elements of ()a
k iχ , with

()
()
()

x
k

a w
k k

k

i
i
iυ

χ
χ χ

χ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 2.41

The predicted mean for the state estimate is calculated using a weighted sum of points

1()x
k iχ + , given by:

2

1 1
0

ˆ ()
L

mean x
k i k

i
W iχ−

+ +
=

=∑x 2.42

where the weight terms mean
iW is given by:

 23

 0
meanW

L
λ
λ

=
+

 2.43

and

 cov , 1,2, ,2
2()

mean
i iW W i L

L
λ
λ

= = =
+

… 2.44

Similarly, the predicted covariance term is given by:

2

1 1 1 1 1
0

ˆ ˆ() ()
L Tconv x x

k i k k k k
i

P W i iχ χ− − −
+ + + + +

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ x x 2.45

where the weight terms are given by 2.44, and the following equation.

 cov 2
0 (1)W

L
λ α β
λ

= + − +
+

 2.46

The mean observation is given by

2

1 1
0

ˆ ()
L

mean
k i k

i
W iγ−

+ +
=

=∑y 2.47

where

 ()1 1 1 1() (), , (), 1x

k k k ki i i kυχ χ+ + + += +γ h u 2.48

The output covariance matrix is given by:

2

1 1 1 1 1
0

ˆ ˆ() ()
L Tyy conv

k i k k k k
i

P W i iγ γ− −
+ + + + +

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ y y 2.49

The innovations covariance is given by Equation 2.32. The cross correlation matrix is

finally described as

2

1 1 1 1 1
0

ˆ ˆ() ()
L Txy conv x

k i k k k k
i

P W i iχ γ− −
+ + + + +

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ x y 2.50

 24

Finally, the Kalman gain and states are updated using the following equations.

 -1()xy
k k kK P Pυυ= 2.51

 ˆ ˆk k k kK υ+ −= +x x 2.52

 T
k k k k kP P K P Kυυ+ −= − 2.53

 ˆ ˆ(,)k k k k k kkυ − −≡ − = −y y y h x u 2.54

A summary of these equations are listed in Table 5 and will be referred to in subsequent

sections that describe the implementation of these filters.

 25

Table 5. Unscented Kalman Filter, from [9]

Model
 1 (, , ,)

(, , ,)
k k k k

k k k k

k
k

+ =

=

x f x w u
y h x u v

Initialize
 () ()

()
0 0 0 0

0 0

ˆ ˆ ,k k

P k P

β β= =

=

q q

Gain -1()xy
k k kK P Pυυ=

Update

ˆ ˆ

ˆ ˆ(,)

k k k k

T
k k k k k

k k k k k k

K

P P K P K

k

υυ

υ

υ

+ −

+ −

− −

= +

= −

≡ − = −

x x

y y y h x u

Propagation 2

1 1
0

2

1 1 1 1 1
0

2

1 1
0

2

1 1 1 1 1
0

1 1

2

1
0

ˆ ()

ˆ ˆ() ()

ˆ ()

ˆ ˆ() ()

L
mean x

k i k
i

L Tconv x x
k i k k k k

i
L

mean
k i k

i

L Tyy conv
k i k k k k

i

yy
k k

L
xy conv

k i k
i

W i

P W i i

W i

P W i i

P P

P W

υυ

χ

χ χ

γ

γ γ

χ

−
+ +

=

− − −
+ + + + +

=

−
+ +

=

− −
+ + + + +

=

+ +

+
=

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

=

=

∑

∑

∑

∑

∑

x

x x

y

y y

1 1 1 1ˆ ˆ() ()
Tx

k k ki iγ− −
+ + + +⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦x y

E. IMPLEMENTATION OF EKF AND UKF METHODS USING THE
SIMPLE PENDULUM PROBLEM

Prior to implementing the EKF and UKF on the spacecraft model, an easier

problem was solved. For this, the simple pendulum was used. Figure 7 shows a diagram

of the simple pendulum problem.

 26

Figure 7. Simple Pendulum Problem

The dynamic equation is commonly known and listed below.

 2

sin()

y

mgl
I ml

θθ −
=

+
 2.55

Translated into the state space model, this becomes:

1

2

3y

x
x x

I x

θ
θ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

 2.56

 1
2

3

2 2
sin()

3

4 0

mgl x
x ml

y

x x
x x

I x

θ
θ −

+

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭⎩ ⎭ ⎩ ⎭

 2.57

P

mg sinθ

θ
L

m

mg cosθ

mg

 27

We can now implement the state-space model into the simulation block diagram as our

dynamics state function. The three states that were estimated were θ , θ , and yI .

x_est_ukf1

x_est_ukf

x_est_ekf

x

u

0

Y

Unscented Kalman Filer

x_k

Pxx _k

Y _meas

ts

Q

R

kappa

x_k1

Pxx _k1

UKF

z

1

z

1

z

1

z

1

Random
Number

Pxx_est_ukf

Pxx_est_ekf

Integrator

1
s

Extended Kalman Filer

x_k

P_k

y _meas

ts

Q

R

x_k+1

P_k+1

1

R

Q

-C-

C(x)

MATLAB
Function

Bc

1

A(x)

MATLAB
Function

Figure 8. Simulink Block Diagram of Simple Pendulum Model

By solving Equation 2.57, we can then use its solution to determine our

measurement equation.

 0 sin()measy B θ α= + 2.58

 28

where measy represents the “measured” angle θ and α represents some initial angular

quantity. The measured values are then perturbed by white Gaussian random numbers to

simulating sensor noise and are subsequently fed into both the EKF and UKF. Appendix

A – Simple Pendulum Simulation, shows the details of the simulation, including the

simulation blocks, and associated Matlab code.

F. EKF AND UKF ESTIMATION RESULTS USING THE SIMPLE
PENDULUM PROBLEM

The results of this estimation problem show how the EKF does not estimate

accurately for nonlinear problems. For the first simulation the pendulum was set to θ =

30°, θ = 0°/sec, and Iy = 5 kg m2. Figure 9 shows the 3σ plot for the angle error between

the estimated values and the true value. The 3σ plot is typically used to the confidence

interval of a given set of data. While the term “3σ” actually refers to three times the

variance of the data distribution, mathematically 3σ can be translated to mean that our

data falls within approximately 99.73% of the symmetric confidence interval (CI).

Conversely, this means that approximately 0.27% of the data falls outside the CI. The

calculation for 3σ is shown below where the variance of diagonal values of the

covariance matrix Pxx are used for n number of states.

1,1 1,2 1,

2,1 2,2 2,
1

,1 ,2 ,

n

nxx
k

n n n n

c c c
c c c

P

c c c

+

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 2.59

 () (), 1,2,...,i k ii kt c t i nσ = ± = 2.60

Here we can see that the EKF cannot accurately estimate the state due to the

nonlinearity of the system. As the pendulum swings and the angle increases, the

 29

nonlinearity of the dynamics increase and thus the filter becomes inaccurate. Conversely,

we see in Figure 10 that the UKF accurately estimates the state well between the 3σ

bounds.

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15
EKF Angle Error (Deg)

Time (S)

A
ng

le
 E

rro
r (

D
eg

)

Figure 9. Angular Errors in EKF with 3σ Error Bounds Simulation 1 (large θ)

 30

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15
UKF Angle Error (Deg)

Time (S)

A
ng

le
 E

rro
r (

D
eg

)

Figure 10. Angular Errors in UKF with 3σ Error Bounds Simulation 1 (large θ)

Figure 11 shows similar results for the estimation of the angular velocity ω.

0 2 4 6 8 10 12 14 16 18 20
-30

-20

-10

0

10

20

30
EKF Angular Rate Error (Deg/Sec)

Time (S)

A
ng

ul
ar

 R
at

e
E

rro
r (

D
eg

/S
ec

)

Figure 11. Angular Rate Errors in EKF with 3σ Error Bounds Simulation 1 (large θ)

 31

0 2 4 6 8 10 12 14 16 18 20
-30

-20

-10

0

10

20

30
UKF Angular Rate Error (Deg/Sec)

Time (S)

A
ng

ul
ar

 R
at

e
E

rro
r (

D
eg

/S
ec

)

Figure 12. Angular Rate Errors in UKF with 3σ Error Bounds Simulation 1 (large θ)

Furthermore, we can see that the estimation for the moment of inertia, Iy, is accurate for

both EKF and UKF. We can conclude that this is largely because Iy is a constant

quantity.

 32

0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
EKF Moment of Inertia Error

Time (S)

M
om

en
t o

f I
ne

rti
a

(k
g

m
2)

Figure 13. Moment of Inertia Errors in EKF with 3σ Error Bounds Simulation 1
(large θ)

0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
UKF Moment of Inertia Error

Time (S)

M
om

en
t o

f I
ne

rti
a

(k
g

m
^2

)

Figure 14. Moment of Inertia Errors in UKF with 3σ Error Bounds Simulation 1
(large θ)

 33

These plots clearly show how the UKF provides a more accurate solution for even

simple nonlinear problems. To further verify this, a second simulation was performed

using smaller initial conditions. Using 21 , 0, 5yand I kg mθ θ= = = , we can see the

both filters estimate well within the 3σ bounds. This can directly be associated with the

small angle approximation where sinθ θ≅ for sufficiently small angles. These plots are

shown below.

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0

1

2

3

4

5
EKF Angle Error (Deg)

Time (S)

A
ng

le
 E

rro
r (

D
eg

)

Figure 15. Angular Errors in EKF with 3σ Error Bounds for Simulation 2 (small θ)

 34

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0

1

2

3

4

5
UKF Angle Error (Deg)

Time (S)

A
ng

le
 E

rro
r (

D
eg

)

Figure 16. Angular Errors in UKF with 3σ Error Bounds for Simulation 2 (small θ)

Similarly, as shown below, we can see that the angular rates also fall within the

bounds.

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10
EKF Angular Rate Error (Deg/Sec)

Time (S)

A
ng

ul
ar

 R
at

e
E

rro
r (

D
eg

/S
ec

)

Figure 17. Angular Rate Errors in EKF with 3σ Error Bounds for Simulation 2

(small θ)

 35

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10
UKF Angular Rate Error (Deg/Sec)

Time (S)

A
ng

ul
ar

 R
at

e
E

rro
r (

D
eg

/S
ec

)

Figure 18. Angular Rate Errors in UKF with 3σ Error Bounds for Simulation 2

(small θ)

We can also see that the both moments of inertia also converge the proper values.

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0

1

2

3

4

5
EKF Moment of Inertia Error

Time (S)

M
om

en
t o

f I
ne

rti
a

(k
g

m
2)

Figure 19. Moment of Inertia Errors in EKF with 3σ Error Bounds for Simulation 2
(small θ)

 36

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0

1

2

3

4

5
UKF Moment of Inertia Error

Time (S)

M
om

en
t o

f I
ne

rti
a

(k
g

m
^2

)

Figure 20. Moment of Inertia Errors in UKF with 3σ Error Bounds for Simulation 2
(small θ)

 37

III. IMPLEMENTATION OF EKF AND UKF FOR SPACECRAFT
ATTITUDE DETERMINATION

A. GENERALIZATIONS

While Chapter II discusses the fundamentals of both EKF and UKF, this chapter

describes the implementation of both methods for attitude determination. In order to

perform Kalman filtering for attitude estimation we must first examine the nature of

quaternion estimation. The following discusses the analytical modeling setup, basic

quaternion attitude kinematics, and finally, the implementation of both EKF and UKF

filters for spacecraft attitude estimation.

B. ANALYTICAL MODELING AND SETUP FOR ATTITUDE
DETERMINATION SIMULATIONS

1. Background

To implement the Kalman filters, a spacecraft simulation was created in

MATLAB Simulink. Much of the initial foundation for this simulation was built

previously, and is documented in [14] and [4]. For a better understanding of how the

simulation works, the following sections will briefly discuss the several of the general

Simulink Blocks. For our purposes, we will define the general simulation blocks as the

following

• Orbit Propagator

• Environmental Effects

• Dynamics and Kinematics

• Disturbance Torques

• Sensors and Noise Modeling

Particularly, the blocks that will be discussed are Spacecraft Kinematics, Attitude

Disturbance Torques, and Spacecraft Sensor/Noise Modeling. These blocks, and the

entire simulation are shown in Appendix B – Spacecraft Attitude Determination

Simulation.

 38

2. Dynamics and Kinematics

Shown in Figure 21, the Dynamics block calculates the spacecraft angular body

rates along each body axis by integrating applied forces, including control torques, based

on Euler’s equations [15].

C_NB
7

EulerBN 321
6

w_BN
5

EulerBO 321
4

q_BO
3

q_BN
2

C_BO
1

Kinematics

omega_BN

omega_ON

C_BO

q_BN

q_BO

EulerBO321

EulerBN321

C_NB

Attitude Dynamics

Torques

Moments of Inertia

initial inertial body rates

omega of orbit in inertial

w_BN

w_ON

omega of orbit in inertial
5

Initial inertial body rates
4

Moments of Inertia
3control torque

2

disturbance torque
1

Figure 21. Attitude Dynamics and Kinematics Simulink Block

The Euler equations are listed below [15].

()

()

()

x z y z y
x

x

y x z x z
y

y

z y x y x
z

z

T J J
J

T J J
J

T J J
J

ω ω
ω

ω ω
ω

ω ω
ω

− −
=

− −
=

− −
=

 2.61

These angular rates were then integrated in to the Kinematics block to determine

the spacecraft orientation. For these simulations, the orientation is described in

quaternions. The quaternion kinematic differential equation is:

 39

1 1

2 2

3 3

4 4

0
01

02
0

z y x

z x y

y x z

x y z

q q
q q
q q
q q

ω ω ω
ω ω ω
ω ω ω
ω ω ω

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 2.62

3. Spacecraft Attitude Disturbance Torques

Three major torque disturbances were taken into consideration for this simulation,

gravity gradient, aerodynamic torque, and solar torque. For gravity gradient torque, the

following equations were used.

()
()
()

2 3

1 33

1 2

3
z y

GG x y

y x

J J c c

T J J c c
R

J J c c

μ
⎡ ⎤−
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥−⎣ ⎦

 2.63

where

1

2

3

0
0
1

BO

c
c C
c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 2.64

The aerodynamic torque was calculated using the simple drag equation.

 21
2aero DF V C Aρ= 2.65

Here we should note that the velocity was determined from the orbit parameters, the

coefficient of drag (CD) was assumed to be 2, and effective area (A) was determined

using spacecraft component areas and centers of pressure. Finally, solar torque was

determined using a Simulink block diagram shown in Appendix B.

 40

4. Spacecraft Sensor and Noise Modeling

All of sensor modeling done for this simulation was completed in Reference [4],

where the author accurately modeled sensor sampling rates and noise sources based on

manufacturer specifications. We can see this in the “Sensors Block” of the simulation.

The most important information from the previous work is shown in Table 6, which

shows the example of noise coefficients for the gyro. These numbers are implemented

into the spacecraft simulation gyro random noise modeler.

Table 6. Summary of Gyro Noise Coefficients, from [4]

 2
vE η⎡ ⎤⎣ ⎦ (°/√sec) 2

uE η⎡ ⎤⎣ ⎦ (°/√sec3)

Gyro Data 1 7.840e-04 1.440e-07

Gyro Data 2 7.840e-04 3.240e-08

Gyro Data 3 7.840e-04 3.240e-08

The equation for modeling the internal measurement unit (IMU) is listed below.

 () () () ()vt t t tω ω β η= + + 2.66
 () ()ut tβ η= 2.67

where ()tω is the continuous-time measured angular rate, and ()v tη and ()u tη are

independent zero-mean Gaussian white-noise processes.

 41

C. ATTITUDE KINEMATICS FOR QUATERNION ESTIMATION

This section describes the Kalman filter as it applies to attitude estimation. It is

important to note that the equations found in this section apply to both the extended and

the unscented Kalman filters.

The quaternion is defined in Equations 2.68, 2.69, and 2.70.

 4

TT q⎡ ⎤≡ ⎣ ⎦q ς 2.68

 []1 2 3 2ˆsin()Tq q q e θ≡ ≡ς 2.69

 4 2cos()q θ= 2.70

where q is the quaternion, ê is the Euler’s axis, θ is the Euler’s angle, and the quaternion

follows the normalization of qTq = 1. The attitude matrix can be related to the quaternion

by the equation below [2].

 ()A =Ξ ΨTq (q) (q) 2.71

where ()TΞ q and ()TΨ q are defined by Equations 2.72 and 2.73.

 []4 3 3()T
T

q I ×⎡ ⎤+ ×
Ξ ≡ ⎢ ⎥−⎣ ⎦

ς
q

ς
 2.72

 []4 3 3()T
T

q I ×⎡ ⎤− ×
Ψ ≡ ⎢ ⎥−⎣ ⎦

ς
q

ς
 2.73

Here 3 3I ×
 is a 3 3× identity matrix and []×ς is the cross product matrix described below.

 42

 []
3 2

3 1

2 1

0
0

0

q q
q q
q q

−⎡ ⎤
⎢ ⎥× ≡ −⎢ ⎥
⎢ ⎥−⎣ ⎦

ς 2.74

Notably, the quaternion error cannot accurately found by subtraction, as the result would

not satisfy the unit norm constraint, and a renormalization would be needed. The

multiplicative error is defined as [16]:

 1ˆδ −= ⊗q q q 2.75

Here we use the symbol ⊗ to indicate the quaternion multiplication [2]. This relationship

is described in Equation 2.76.

 (') () (')A A A= ⊗q q q q 2.76

For implementation, the function XI was used in Matlab. This can be seen in Appendix

A – Matlab Code and Simulink Diagrams. The time derivative of the quaternion error

becomes

 1 1ˆ ˆδ − −= ⊗ + ⊗q q q q q 2.77

As derived in [16], the estimated quaternion kinematics equation is given by

 []1
2() () ()t t t= Ξq q ω 2.78

Where ()tω is the 3 1× angular velocity vector. The local error-quaternion,

4

T
Tq qδ δς δ⎡ ⎤≡ ⎣ ⎦

, can now be used to find the generalized Rodriguez parameter which will

be useful later in the implementation of the UKF [4].

 43

4

f
a q
δδ
δ

≡
+
ςp 2.79

where a is a parameter from 0 to 1, and f is a scale factor. Suggested values for, f, is

2(a+1) so that δp is equal to ϑ for small errors, where ϑ is the angle of rotation [4].

In the simulations presented in the thesis a was set to 1 to reproduce the results shown in

[4]. While the propagation of the state and covariance can be accomplished by using

numerical integration techniques, the measurement observations are typically sampled at

higher rates than they are updated. This proves useful, as we can use a discretized

version of the propagation equations. Using the power series, we can derive the new

discretized propagation equation from 2.78 [9].

() ()

()

()

()

2 2 1

ˆ
2

0

1 1ˆ ˆ
2 2

2 ! 2 1 !

k k

t

k

t t
e

k k

ω ω ω
+

Ω ∞

=

⎧ ⎫⎡ ⎤ ⎡ ⎤Ω Ω⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦= +⎨ ⎬+⎪ ⎪
⎪ ⎪⎩ ⎭

∑ 2.80

Using the identities described in Equations 2.81 and 2.82, we can substitute them into

Equation 2.80.

 () () 22
4 4ˆ ˆ1 kkk

xIω ωΩ = − 2.81

 () () ()22 1 ˆ ˆ ˆ1 kkk ω ω ω+Ω = − Ω 2.82

() ()

() ()
()

()

2 2 1

ˆ
12

4 4
0 0

1 1ˆ ˆ1 1
2 2ˆ ˆ
2 ! 2 1 !

k k
k k

t

x
k k

t t
e I

k k

ω ω ω
ω ω

+

Ω ∞ ∞
−

= =

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= + Ω
+∑ ∑ 2.83

This equation then simplifies using trigonometric identities to the following

 44

()

()
ˆ

2
4 4

1 ˆsin
1 2ˆ ˆcos

ˆ2

t

x

t
e I t

ω ω
ω ω

ω

Ω
⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= +Ω⎜ ⎟

⎝ ⎠
 2.84

Finally, the quaternion propagation is found to be [9]:

 ()1ˆ ˆ ˆk k kω− + +
+ = Ωq q 2.85

Where ˆkω
+ and ˆ k

+q are the post-update estimates and ()ˆkω
+Ω are given by Equations 2.86

and 2.87.

 ()
3 3

1 ˆ ˆˆcos
2ˆ

1ˆ ˆcos
2

x k k k

k
T

k k

I t

t

ω
ω

ω

+ + +

+

+ +

⎡ ⎤⎛ ⎞ ⎡ ⎤Δ − Ψ × Ψ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎢ ⎥≡
⎢ ⎥⎛ ⎞−Ψ Δ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

Ω 2.86

1 ˆ ˆsin
2ˆ

ˆ

k k

k
k

t+ +

+
+

⎛ ⎞Δ⎜ ⎟
⎝ ⎠Ψ ≡

ω ω

ω
 2.87

For both the EKF and the UKF, we will use a rate gyro and a magnetometer. Given a

post-update estimate for the bias k̂β
+ , we will use the following equation to find the post-

update angular velocity and propagated bias.

1

ˆˆ
ˆ ˆ

k k k

k k

ω ω β

β β

+ +

− +
+

= −

=
 2.88

 45

We will use these equations in both the EKF and UKF to solve the attitude determination

problem in the following sections.

D. CRASSIDIS AND MARKLEY’S UNSCENTED QUATERNION
ESTIMATOR (USQUE)

 In this section, the unscented Kalman filter described in Crassidis and Markley’s

paper on spacecraft attitude estimation, Reference [4], is implemented. This filter is

called the UnScented QUaternion Estimator (USQUE). More specifically, the following

describes how the USQUE is implemented in spacecraft attitude-determination

simulations using MATLAB.

 First, however, we must take step back and look at implementation of the UKF

process as a sequential series of steps. Figure 22 shows the UKF graphically in the form

of a flow chart. Similarly, we will refer to this flow chart throughout this section as it

follows Crassidis and Markley’s USQUE closely. The Matlab Code generated for this

simulation also follows this flowchart and is listed in Appendix A.

 46

Figure 22. Unscented Quaternion Estimator Flow Chart

 47

To begin, Figure 23 shows the UKF block of the attitude determination simulation

shown in Appendix A.

Table 7 describes the inputs and outputs of this block.

[w_BNf_u]

[bias_f_u]

[q_BNf_u]

[Pnorm_u]

[Pdiag_u]

w_BN

Bm

b

w_BNf _u

q_BNf _u

bias_f _u

Pdiag_u

Pnorm_u

Unscented Kalman Filter

[w_BNm]

[b]

[Bm]

Figure 23. Unscented Kalman Filter Block - Level 1

Table 7. Description of Inputs and Outputs for UKF Block - Level 1

Input Output

Variable Name Description Variable Name Description

w_BNm, (kω)

Sensor measured angular

rate (from gyro)
w_BNf_u, (ω̂) Estimated angular

rate

Bm, (kβ)
Sensor measured magnetic

field (from magnetometer)
q_BNf_u, (q̂) Estimated quaternion

b, (ˆ
kβ)

Estimated magnetic field

from environment model.
bias_f_u Estimated

magnetometer bias

Pdiag_u Diagonal terms of the

covariance matrix

 Pnorm_u Norm of the

covariance matrix

 48

 As Figure 23 shows the top level of the UKF, Figure 24 shows the Level 2 block

showing a few more inputs. These will be discussed further in the section. As a side

note, the following sections are also well documented in the embedded Matlab code

associated with this Simulink block. This code can be found in Appendix B.

5
Pnorm_u

4
Pdiag_u

3
bias_f_u

2
q_BNf_u

1
w_BNf_u

MATLAB
Function

norm

MATLAB
Function

diag

wk1t

q_init

Bk1

B

dt

sig

lambda

a

wk1

qk1

biask1

Pxx_k1

UKF

0

-3

sig

t_ekf

[0,0,0,1]'

3
b

2
Bm

1
w_BN

Figure 24. Unscented Kalman Filter Block - Level 2

1. Initialization

 Referring to Figure 22, we can see that the USQUE process begins with the

initialization portion of the estimation. Here we must choose the initial values for our

states, which include the quaternion and the bias. For the initial simulations, the initial

quaternion was set to [0,0,0,1] and the bias to [0,0,0]. For later simulations, as discussed

in the results section, initial conditions were changed to highlight major differences

between the UKF and EKF.

2. Calculation of Sigma Points

Calculations of Sigma Points begin with defining the following state vector:

 49

ˆ

ˆ(0) ˆ
k

k k
k

x
δ

χ
β

+
+

+

⎡ ⎤
= ≡ ⎢ ⎥

⎢ ⎥⎣ ⎦

p
 2.89

Here we can use Equation 2.79 for ˆ kδ +p , which is the 4 x 1 error quaternion, and the 3

state bias term, k̂β
+ . These values will be propagated and used to update the final nominal

state. This resulting covariance matrix is a 6 x 6. It is important to note here that for

propagating these values forward we can now use Equations 2.42 through 2.50.

However, before we use these equations, we must partition the sigma points ()k iχ so that

we can work only with the quaternion portion.

 ()
() 0,1, ,12

()

p
k

k
k

i
i i

i

δ

β

⎡ ⎤
≡ =⎢ ⎥
⎣ ⎦

χ
χ

χ
… 2.90

where p
k
δχ is the attitude error part, and ()k iβχ is the gyro bias part. Now that we have

parsed out these terms, we must determine the new quaternion generated by multiplying

the error quaternion by its current estimate.

 ˆ ˆ(0)k k
+ +=q q 2.91

 ˆ ˆ ˆ() () 1,2, ,12k k ki i iδ+ + += ⊗ =q q q … 2.92

where ˆ k
+q is the current quaternion estimate, and ˆ kδ +q is the error quaternion. The error

quaternion is broken up into the 3 state quaternion vector kδ +ς , and the forth

quaternion, 4k
qδ + , shown in Equations 2.93, 2.94, and 2.95.

 4ˆ () () () , 1,2,...,12
k

T
T

k ki i q i iδ δ δ+ + +⎡ ⎤≡ =⎣ ⎦q ς 2.93

 50

2 22 2

4 22

() (1) ()
() , 1,2,...,12

()k

k k

k

a i f f a i
q i i

f i
δ +

− + + −
= =

+

δp δp

δp

χ χ

χ
 2.94

 1
4() () (), 1,2,...,12

kk ki f a q i i iδδ δ+ − +⎡ ⎤= + =⎣ ⎦
pς χ 2.95

We chose 2(1)f a= + , where a values were selected using Table 1 from [4]. Next, these

updated quaternions are propagated forward using Equation 2.85 for each i, or step,

shown below.

 ()1ˆ ˆ ˆ() () () 0,1,...,12k k ki i i iω− + +
+ = Ω =q q 2.96

where again the angular velocities are given by Equation 2.97 similar to Equation 2.88 in

the previous section. Here, we can see that for ˆ (0) (0)k k k
βω ω+ = − χ , ˆ(0)k k

β β +=χ .

 ˆ () (), 0,1,...,12k k ki i iβω ω+ = − =χ 2.97

The propagated error quaternions are now calculated using Equation 2.98.

 1

1 1 1ˆ ˆ() () (0) , 0,1,...,12k k ki i iδ
−− − −

+ + +⎡ ⎤= ⊗ =⎣ ⎦q q q 2.98

it is interesting to note that where 1ˆ (0)kδ −
+q here should be the identity quaternion

[0, 0, 0, 1]. Finally, the propagated sigma points can be calculated using the following

equations.

 1(0) 0k
δχ + =p 2.99

1

1
1

4

()() , 1,2,...,12
()

k

k
k

ii f i
a q i

δ δ
δ

+

−
+

+ −= =
+

p ςχ 2.100

where 1()k iδ −
+ς and

14 ()
k

q iδ
+

− are found from the following equation.

 51

11 1 4() () ()

k

T T
k ki i q iδ δ δ

+

− − −
+ +

⎡ ⎤= ⎣ ⎦q ς 2.101

We also know that from Equation 2.88, we can expect the following.

 1() (), 1,2,...,12k ki i iβ β
+ = =χ χ 2.102

3. Covariance and Gain Calculations

 The next step in the UKF process is to calculate the covariances and gains which

is the most notable difference between the EKF and UKF. Now that we have calculated

our sigma points, we can determine these values. As previously mentioned in the

derivation of the UKF, we can determine the predicted covariance matrix 1kP−
+ , shown as

Pxx in the Matlab code, the output covariance 1
yy

kP + , and the cross correlation covariance

1
xy

kP + . These equations are found as 2.39, 2.43, and 2.45, respectively. These equations

are utilized in the “Covariance and Gain Calculations” section of the embedded Matlab

code for the UKF. For initial conditions, Pxx is the set to kQ , where the variations for the

sensors are used. The following equation is used for kQ .

2 2 21

3 3 3 36
2

3 3 3 3

() 0
2 0

u
k

u

t ItQ
I

υσ σ
σ

× ×

× ×

⎡ ⎤− ΔΔ
= ⎢ ⎥

⎣ ⎦
 2.103

The mean observation is also needed to calculate the covariance terms.

1

2
1

1

ˆ ()

ˆ ()
() , 0,1,...,12

ˆ ()

k

N k

A i r

A i r
i i

A i r

γ

−

−

+

−

+

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦= =⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

q

q

q

 2.104

 52

With these covariance matrices calculated, we can now determine the Kalman gain K

from the equation in Table 5. Unscented Kalman Filter, from [9]. This equation is also

shown below.

 -1()xy
k k kK P Pυυ= 2.105

4. Update Routine for States and Error Covariance

 After the gains are calculated, states and error covariances must be updated. First,

the error covariance is updated using the following equation.

 T
k k k k kP P K P Kυυ+ −= − 2.106

The state update is found using

 ˆ ˆk k k kK υ+ −= +x x 2.107

Finally we can update the quaternions using the following set of equations where

1 1 1
ˆˆˆ ,k k kδ β+ + +

+ + +
⎡ ⎤= ⎣ ⎦x p .

 1 1 1ˆ ˆ (0)k k kδ + + −
+ + += ⊗q q q 2.108

11 1 4ˆ

k

T
T

k k qδ δ δ
+

+ + +
+ +

⎡ ⎤≡ ⎣ ⎦q ς 2.109

1

2 22 2
1 1

4 22
1

ˆ (1)
k

k k

k

a f f a
q

f
δ

+

+ +
+ ++

+
+

− + + −
=

+

δp δp

δp
 2.110

1

1
1 4 1ˆ

kk kf a qδ δ δ
+

+ − + +
+ +⎡ ⎤= +⎣ ⎦ς p 2.111

 53

These equations are very similar to those used earlier to find the initial error quaternion.

The final step here is to update the bias using Equation 2.88. For further clarification, the

Matlab code references the equations used with respect to [4]. This unscented Kalman

filter was built to be compared with the extended Kalman filter. The EKF and UKF

models for attitude are based on the model presented in [9] and [4] where the state vector

is represented as the error in the quaternion and generalized Rodriquez parameter

respectively.

E. IMPLEMENTATION OF THE EXTENDED KALMAN FILTER

The EKF implemented in this simulation uses many of the equations used in

previous sections. Similar to the previous section, Figure 25 shows a flow chart of the

EKF. By comparison, we can see very clearly that the major difference in the EKF is the

calculation of the sensitivity matrix, which is the inherent linearization processes

associated with this filter. Much of the information on the derivation of the EKF is

discussed in [4] and Table 8 shows a summary of the EKF equations. A complete listing

of both the Matlab Simulation block diagram and embedded Matlab code are shown in

Appendix B.

 54

Figure 25. Extended Kalman Filter Flow Chart

 55

Table 8. Summary of EKF Equations, from [9]

Initialize
 () ()

()
0 0 0 0

0 0

ˆ ˆ ,k k

P k P

β β= =

=

q q

Propagate

()1

1

ˆˆ
ˆ ˆ

ˆ ˆ ˆ

k k k

k k

k k k

T T
k k k k k k kP P G Q G

ω ω β

β β

ω

+ +

− +

− + +
+

− +
+

= −

=

= Ω

= Φ Φ +

q q

Gain () () ()
[]

1

3 3

ˆ ˆ ˆ

0

T T
k k k k k k k k k k

B
k m x

K P H H P H R

H B

−
− − − − −⎡ ⎤= +⎣ ⎦

⎡ ⎤= − ×⎣ ⎦

x x x

Update

()

()

()

ˆ ˆˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ

2
ˆ

T T
k k k

k k k k k

k k k

k
k k k

k k k k k

K

P I K H P

α β

β β β

δα

+ + +

+ −

+ − +

−
+ − +

+ − −

⎡ ⎤Δ ≡ Δ Δ⎣ ⎦
⎡ ⎤Δ = −⎣ ⎦

= + Δ

Ξ
= +

⎡ ⎤= −⎣ ⎦

x

x y h x

q
q q

x

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

IV. COMPARISON OF SIMULATION RESULTS USING EKF
AND UKF FILTERING METHODS

A. SIMULATION CONDITIONS

In this section, several performance comparisons between the USQUE and EKF

are made through simulations using the previously discussed spacecraft model and the

designed EKF and UKF filters. Using a 500-km circular orbit the simulation time was set

at 4,000 seconds. The attitude determination hardware in these simulations consisted of a

gyroscopic rate sensor and a three-axis magnetometer (TAM). The magnetic field

reference model uses a magnetic dipole approximation as previously discussed.

Furthermore, these sensors were characterized in previous work [4]. In the first

simulation, the initial attitude error was set only to 30°, while the attitude rate error was

set to 0°/sec in all axes. A second simulation was run using an initial attitude error of 30°

and an attitude rate error of 30°/sec in all axes.

B. SIMULATION 1 RESULTS

The following shows the results of Simulation 1. Figure 26 shows the attitude

error of the quaternion for the EKF estimator with 3σ bounds. We can see that the EKF

takes approximately 4,000 seconds before the error is bounded. Conversely, we can see

that the attitude error of the UKF is bounded in approximately 2,500 seconds. This is

shown in Figure 27 where the generalized Rodriguez parameters are shown. It is

important to note that we use the generalized Rodriquez parameters instead of the

quaternion for the UKF because the 3σ bounds are calculated from the square root of the

diagonals of the covariance matrix P . For the UKF the covariance matrix is built from

δp which is shown in Equation 2.79, as δp is the error in the vector of the generalized

Rodriquez parameter. For comparison purposes, Figure 30 will show both normalized

quaternion errors without the 3σ bounds.

 58

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δq
1

Quaternion Error for EKF

0 500 1000 1500 2000 2500 3000 3500 4000
-0.02

-0.01

0

0.01

0.02

Time (Sec)

δq
2

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δq
3

Figure 26. Simulation 1 Quaternion Attitude Error with 3σ Bounds for EKF

 59

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δp
1

Generalized Rodriquez Parameter Error for UKF

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05

Time (Sec)

δp
2

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δp
3

Figure 27. Simulation 1 Generalized Rodriguez Parameter Attitude Error with for 3σ
Bounds for UKF

 60

Similarly, we see that both EKF and UKF bias errors converge in a similar way.

While Figure 28 shows the bias for the EKF converging within the 3σ bounds at

approximately 2,700 seconds, Figure 29 shows convergence at a little after 1,000

seconds. We can also see that the initial estimates of the EKF are more inaccurate than

the UKF.

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

1

Bias Error for EKF

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

2

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

3

Figure 28. Simulation 1 EKF Bias Errors with 3σ Bounds

 61

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

1

Bias Error for UKF

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

2

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

3

Figure 29. Simulation 1 UKF Bias Errors with 3σ Bounds

 62

Finally, we can see that the normalized EKF and UKF attitude errors converge as

originally predicted and demonstrated in the simple pendulum problem. Figure 30

clearly shows the better performance of the UKF. Again, as a nonlinear estimator, the

UKF consistently shows better performance on all figures. This is again shown in

comparison plot of the normalized bias errors displayed in Figure 31 where we can see

that, although both estimators are trending appropriately, that the UKF performs

significantly better.

0 500 1000 1500 2000 2500 3000 3500 4000
10-3

10-2

10-1

100

10
1

Normalized EKF and UKF Attitude Errors

Time (Sec)

A
tti

tu
de

 E
rro

rs

Normalized UKF Generalized Rodriguez Parameter Errors
Normalized EKF Generalized Rodriguez Parameter Errors

Figure 30. Comparison of EKF and UKF Normalized Attitude Errors for
Simulation 1

 63

0 500 1000 1500 2000 2500 3000 3500 4000

10-4

10-3

10
-2

Normalized EKF and UKF Bias Errors

Time (Sec)

N
or

m
al

iz
ed

 β
 E

rro
rs

Normalized UKF Bias Errors
Normalized EKF Bias Errors

Figure 31. Comparison of EKF and UKF Normalized Bias Errors for Simulation 1

C. SIMULATION 2 RESULTS

 The second simulation shows very similar results. Although we can see similar

trends in both the EKF and UKF error estimates, we can see that the UKF consistently

performs better in every plot. Again, Figure 32 shows the EKF attitude quaternion error,

which settles within the 3σ bounds at approximately 3,000 seconds. Figure 33 shows the

UKF attitude generalized Rodriquez parameter error settles at 2,500 seconds. The

increased performance is shown without fail for all subsequent plots in this section.

 64

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δq
1

Quaternion Error for EKF

0 500 1000 1500 2000 2500 3000 3500 4000
-0.02

-0.01

0

0.01

0.02

Time (Sec)

δq
2

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δq
3

Figure 32. Simulation 2 Quaternion Attitude Error with 3σ Bounds for EKF

 65

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δp
1

Generalized Rodriquez Parameter Error for UKF

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05

Time (Sec)

δp
2

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2

Time (Sec)

δp
3

Figure 33. Simulation 2 Generalized Rodriguez Parameter Attitude Error with for 3σ
Bounds for UKF

Figures 34 and 35 show that the bias for the EKF settles at approximately 2,700 seconds

while the UKF bias settles at 1,700 seconds.

 66

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

1

Bias Error for EKF

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

2

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

3

Figure 34. Simulation 2 EKF Bias Errors with 3σ Bounds

 67

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10

-4

Time (Sec)

δ
β

1

Bias Error for UKF

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10-4

Time (Sec)

δ
β

2

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5
x 10

-4

Time (Sec)

δ
β

3

Figure 35. Simulation 2 UKF Bias Errors with 3σ Bounds

 68

Finally, we can see in Figure 36 that the normalized attitude error of the UKF is

much better. Similarly, this is shown in Figure 37 with the comparison of the normalized

bias errors.

0 500 1000 1500 2000 2500 3000 3500 4000
10

-3

10
-2

10
-1

10
0

10
1

Normalized EKF and UKF Attitude Errors

Time (Sec)

A
tti

tu
de

 E
rro

rs

Normalized UKF Generalized Rodriguez Parameter Errors
Normalized EKF Generalized Rodriguez Parameter Errors

Figure 36. Comparison of EKF and UKF Normalized Attitude Errors for
Simulation 2

 69

0 500 1000 1500 2000 2500 3000 3500 4000

10
-5

10-4

10-3

10-2
Normalized EKF and UKF Bias Errors

Time (Sec)

N
or

m
al

iz
ed

 β
 E

rro
rs

Normalized UKF Bias Errors
Normalized EKF Bias Errors

Figure 37. Comparison of EKF and UKF Normalized Bias Errors for Simulation 2

D. DISCUSSION OF RESULTS AGAINST PREVIOUS LITERATURE

Much of the work on the UKF was researched [4]. In this paper, Crassidis and

Markley discuss the performance of the UKF as it applies to the spacecraft attitude

determination problem. Figure 38 is taken from [4] and shows many similarities to the

spacecraft model designed for this thesis. Although the results are not identical, they

shown very similar trends and performance characteristics. It should be noted that the

initial error conditions used for simulations in [4], were much larger and are used here to

highlight the differences in accuracy. The simulations done for this thesis were set at

4,000 seconds.

 70

Figure 38. Norm of Attitude Errors, from [4]

 71

V. CONCLUSION

A. SUMMARY

The results from the simulations clearly show that the UKF developed here is

more accurate than the EKF [2]. Both the EKF and UKF were rigorously tested and

validated against previous research papers. These results show both that the UKF is

largely better for nonlinearities, but that the EKF performs rather well. To take

advantage of the UKF, large nonlinearities must be present in the physical dynamics of

the system. In summary, we have shown that the UKF has a lower expected error than

the EKF for all instances of spacecraft attitude determination. We showed, in the

pendulum problem, that as the nonlinearity of the dynamics increase, that the UKF shows

increased performance over the EKF. However, for slightly nonlinear or linear

estimation, the EKF performs well and will provide accurate solutions. The one

remaining question is the computational expense that the extra computations cost. In our

simulations the UKF performed approximately 2.4 times slower than the EKF, which was

consistent with [4]. As the optimization of any process is measured by a cost function,

one must evaluate and prioritize the resources available. Literature tells us that the UKF

has 2.5 times the cost in computational time of the EKF [4]. For spacecraft with relaxed

attitude-control requirements and low computational power, it could be argued that the

EKF could perform sufficiently without the added expense. However, the UKF can

certainly be used in the worst case conditions, such as partial loss of attitude control, and

in the “lost in space” scenario where anomalies in the separation event from the launch

vehicle imparts a large torque on the spacecraft hurling it into an unwanted orientation.

These scenarios, although somewhat unlikely, mostly likely cannot be recovered from

using an EKF estimator.

B. FUTURE WORK

This thesis presents partial validation of the UKF and EKF estimators. Although

the results are favorable and largely resemble other research papers, a more realistic

simulation would require hardware. Further developments in the model can also be

 72

applied. A high order magnetic field model could be implemented if the computing

resources were available. Most importantly, Monte Carlo simulations should be run to

show the full performance characteristics of both filters. All of this work is completely

possible for further thesis students and laboratory research such as the currently being

performed in the Nanosatellite Advance Concepts Laboratory.

 73

APPENDIX A – SIMPLE PENDULUM SIMULATION

SIMULINK Block Diagram - Simple Pendulum Simulation

x_est_ukf1

x_est_ukf

x_est_ekf

x

u

0

Y

Unscented Kalman Filer

x_k

Pxx _k

Y _meas

ts

Q

R

kappa

x_k1

Pxx _k1

UKF

z

1

z

1

z

1

z

1

Random
Number

Pxx_est_ukf

Pxx_est_ekf

Integrator

1
s

Extended Kalman Filer

x_k

P_k

y _meas

ts

Q

R

x_k+1

P_k+1

1

R

Q

-C-

C(x)

MATLAB
Function

Bc

1

A(x)

MATLAB
Function

 74

Model Initialization Parameters

time_step=0.05;
sigmanoise=1e-2;
R=sigmanoise^2;
Q=diag([0.00001,0.00001,0.001]);

fncA.m

function deriv = fncA(x)
m=50;
g=9.81;
l=0.1;

deriv=zeros(3,1);
deriv(1,1)=x(2,1);
deriv(2,1)=-(m*g*l*sin(x(1)))/(x(3)+m*l^2);

fncC.m

%#eml
function y = fncC(x)
Bo=0.5;
alf=30*pi/180;

y=Bo*sin(x(1,1)+alf);

 75

Unscented Kalman Filter – Embedded Matlab Block

%#eml

function [x_k1,Pxx_k1] = UKF(x_k,Pxx_k,Y_meas,ts,Q,R,kappa)
% This block supports the Embedded MATLAB subset.
% See the help menu for details.

Dx=size(x_k,1);
Dy=size(Y_meas,1);
NSig=2*Dx+1;
sig_x=(chol((Dx+kappa)*Pxx_k))';
%%%%%%%%%%%%%%%%%%%%%
x_sig_k=x_k*ones(1,NSig)+[zeros(Dx,1) sig_x -sig_x];
RK=zeros(Dx,4);
x_sig_k1=zeros(Dx,NSig);
y_sig_k1=zeros(Dy,NSig);

for i=1:NSig
 RK(:,1)=fncA(x_sig_k(:,i));
 RK(:,2)=fncA(x_sig_k(:,i)+1/2*ts*RK(:,1));
 RK(:,3)=fncA(x_sig_k(:,i)+1/2*ts*RK(:,2));
 RK(:,4)=fncA(x_sig_k(:,i)+ts*RK(:,3));
 x_sig_k1(:,i)=x_sig_k(:,i)+1/6*ts*RK*[1 2 2 1]';
 y_sig_k1(:,i)=fncC(x_sig_k1(:,i));
end

W=ones(NSig,1)/(2*(Dx+kappa));
W(1,1)=kappa/(Dx+kappa);

x_k1p=x_sig_k1*W;
y_k1p=y_sig_k1*W;

Pxx_k1p=Q;
Pyy_k1p=R;
Pxy_k1p=zeros(Dx,Dy);

for i=1:NSig
 xdif=x_sig_k1(:,i)-x_k1p;
 ydif=y_sig_k1(:,i)-y_k1p;
 Pxx_k1p=Pxx_k1p+xdif*xdif'*W(i,1);
 Pyy_k1p=Pyy_k1p+ydif*ydif'*W(i,1);
 Pxy_k1p=Pxy_k1p+xdif*ydif'*W(i,1);
end

K=Pxy_k1p/Pyy_k1p;
Pxx_k1=Pxx_k1p-K*Pxy_k1p';
x_k1=x_k1p+K*(Y_meas-y_k1p);

 76

Extended Kalman Filter Block

P_k+1
2

x_k+1
1

Update

X_k

P_k

y _meas

R

X_k_hat

P_k_hat

Propagation

X_k_hat

P_k_hat

ts

Q

X_k+1

P_k+1

R
6

Q
5

ts
4y_meas

3

P_k
2

x_k
1

Extended Kalman Filter Block-Update Block

P_k_hat
2

X_k_hat
1

x_est_ukf1

Update of X
x_k + K(y-h(x))

Update of P
(I - K H(x)) P

Matrix
Multiply

Residual
y - h(x)

P H^T(HPH^T+R)^-1

Matrix
Multiply

P H^T

Matrix
Multiply

K H(x)

Matrix
Multiply

K (y-h(x))

Matrix
Multiply

I - K H(x)

H^T

MATLAB
Function H P H^T + RH P H^T

Matrix
Multiply

x yH

eye (3)

C(x)

MATLAB
Function

(HPH^T +R)^-1

MATLAB
Function

R
4

y_meas
3

P_k
2

X_k
1

K

 77

Extended Kalman Filter –Propagation Block

P_k+1
2

X_k+1
1

Update of X
x_k + K(h(x)-y)1

Phi ^T MATLAB
Function

Phi P Phi ^T

Matrix
Multiply

x

ts

xprop

Phi

Integrate

Q
4

ts
3

P_k_hat
2

X_k_hat
1

 78

Integrate- Embedded Matlab Block

function [xprop, Phi] = Integrate(x,ts)
% This block supports the Embedded MATLAB subset.
% See the help menu for details.

KX1=fncA(x);
KP1=F(x);
KX2=fncA(x+1/2.0*ts*KX1);
KP2=F(x+1/2.0*ts*KX1)*(eye(3)+1/2.0*ts*KP1);
KX3=fncA(x+1/2.0*ts*KX2);
KP3=F(x+1/2.0*ts*KX2)*(eye(3)+1/2.0*ts*KP2);
KX4=fncA(x+ts*KX3);
KP4=F(x+ts*KX3)*(eye(3)+ts*KP3);

xprop = x + 1/6.0*ts*(KX1+2*KX2+2*KX3+KX4);
Phi = eye(3) + 1/6.0*ts*(KP1+2*KP2+2*KP3+KP4);
return

function deriv=F(x)
m=50;
g=9.81;
l=.1;

deriv=zeros(3,3);
deriv(1,2)=1;
deriv(2,1)=-m*g*l*cos(x(1,1))/(x(3,1)+m*l^2);
deriv(2,3)=m*g*l*sin(x(1,1))/(x(3,1)+m*l^2)^2;
return

pendulum_plots.m

x_true=zeros;
[m n p]=size(x);
x_true(1:m,1:p)=x(1:m,1,1:p);
x_true=x_true';

%% State 1: Theta

%EKF Error
figure(1)
plot(t, (x_est_ekf(:,1)-x_true(:,1))*180/pi);
grid on
title('EKF Angle Error (Deg)')
xlabel('Time (S)')
ylabel('Angle Error (Deg)')
% ylim([-5 5])
hold on
plot(t, 3*sqrt(Pxx_est_ekf(:,1))*180/pi','-.');
plot(t, -3*sqrt(Pxx_est_ekf(:,1))*180/pi','-.');
%UKF Error

 79

figure(2)
plot(t, (x_est_ukf(:,1)-x_true(:,1))*180/pi);
grid on
title('UKF Angle Error (Deg)')
xlabel('Time (S)')
ylabel('Angle Error (Deg)')
% ylim([-5 5])
hold on
plot(t, 3*sqrt(Pxx_est_ukf(:,1))*180/pi','-.');
plot(t, -3*sqrt(Pxx_est_ukf(:,1))*180/pi','-.');

%% State 2: Omega - Angular Rate

%EKF Error
figure(4)
plot(t, (x_est_ekf(:,2)-x_true(:,2))*180/pi);
grid on
title('EKF Angular Rate Error (Deg/Sec)')
xlabel('Time (S)')
ylabel('Angular Rate Error (Deg/Sec)')
% ylim([-10 10])
hold on
plot(t, 3*sqrt(Pxx_est_ekf(:,2))*180/pi','-.');
plot(t, -3*sqrt(Pxx_est_ekf(:,2))*180/pi','-.');

%UKF Error
figure(5)
plot(t, (x_est_ukf(:,2)-x_true(:,2))*180/pi);
grid on
title('UKF Angular Rate Error (Deg/Sec)')
xlabel('Time (S)')
ylabel('Angular Rate Error (Deg/Sec)')
% ylim([-10 10])
hold on
plot(t, 3*sqrt(Pxx_est_ukf(:,2))*180/pi','-.');
plot(t, -3*sqrt(Pxx_est_ukf(:,2))*180/pi','-.');

%% State 3: Iy - Moment of Inertia

%EKF Error
figure(7)
plot(t, x_est_ekf(:,3)-x_true(:,3));
grid on
title('EKF Moment of Inertia Error')
xlabel('Time (S)')
ylabel('Moment of Inertia (kg m^2)')
% ylim([-5 5])
hold on
plot(t, 3*sqrt(Pxx_est_ekf(:,3))','-.');
plot(t, -3*sqrt(Pxx_est_ekf(:,3))','-.');

%UKF Error
figure(8)
plot(t, x_est_ukf(:,3)-x_true(:,3));

 80

grid on
title('UKF Moment of Inertia Error')
xlabel('Time (S)')
ylabel('Moment of Inertia (kg m\^2)')
% ylim([-5 5])
hold on
plot(t, 3*sqrt(Pxx_est_ukf(:,3))','-.');
plot(t, -3*sqrt(Pxx_est_ukf(:,3))','-.');

 81

APPENDIX B – SPACECRAFT ATTITUDE
DETERMINATION SIMULATION

ADS_SpacecraftSim.mdl

tangent velocity

[Vt]

radial velocity

[Vr]

[q_BO]

orbit radius

[r]

[w_BNf_u]

[bias]

[w_BNf]

[w_BNm]

[C_NB]

[EulerBN 321]

[w_BN]

mu

CONST .mu

latitude

[lat]

[bias_f_u]

[q_BNf_u]

[Pnorm]

[Pdiag]

[bias_f]

[Bm]

[b_s]

[q_BNf]

[Pnorm _u]

[Pdiag _u]

[q_BNm]

[q_BN]

inclination

[i]

earth angular radius

[rho _earth]

altitude

[h]

Unscented Kalman Filter

w_BN

Bm

b

q_init

bias_init

w_BNf _u

q_BNf _u

bias_f_u

Pdiag_u

Pnorm_u

True Anomaly

[TA]

Total Dist Torques

[Td]

Solar Beta

[beta]

Simulation Time

[SimTime]

Sensors

w_BN

EulerBN321

q_BN

Sn

eclipse

b

w_BNm

bias

q_BNm

b_s

Bm

R vector

[R]

Orbital in Intertial Rates

[w_ON]

Orbit Propagator

True Anomaly

R vector

radius

Vt

Vr

i

solar beta

altitude

rho earth

Latitude

Longitude

SimTime

No Init Bias Err .

[bias]

No Init Attitude Err .

[0,0,0,1]'

Multiplicative Quaternion
Extended Kalman Filter

w_BN

Bm

b

q_init

bias_init

w_BNf

q_BNf

bias_f

Pdiag

Pnorm

MATLAB
Function

Longitude

[long]

Interia Matrix

[J_Matrix]

Initial Inertial Body Rates

[w_BNo]

Initial Bias Estimate

(0 0 0)

Init Att . Err.
[30 ,30 ,30]'

[w_BNm]

[Tc]

[w_ON]

[b]

[w_BNo]
[Bm]

[w_BN]

[J_Matrix] [EulerBO 321]

Environmental Effects

altitude

R

C_NB

C_BO

beta

TA

earth angular radius

rho_a

Magnetic Field

Body Sun Vector

Inertial Sun Vector

Eclipse

Earth Gravity Const

[mu]

Dynamics and Kinematics

disturbance torque

control torque

Moments of Inertia

Initial inertial body rates

omega of orbit in inertial

C_BO

q_BN

q_BO

EulerBO321

w_BN

EulerBN321

C_NB

Disturbance Torques

C_BO

radius

J_Matrix

mu

Tangential Velocity

Radial Velocity

solar vector

Eclipse

rho_a

Td

[nS_hat]

[eclipse]

[bS_hat]

[b]

[rho_a]

[C_BO]
[Td]

[b]

[eclipse]

[nS_hat]

[q_BN]

[C_NB]

[C_BO]

[h]

[R]

[EulerBN 321]

[TA]

[beta]

[rho _earth] [eclipse]

[bS_hat]

[Vr]

[Vt]

[mu]

[r]

[J_Matrix]

[C_BO]

[rho _a]

w_BNo

w_ON

J_Matrix

 82

Orbit Propagator-Simulink Block

SimTime
12

Longitude
11

Latitude
10

rho earth
9

altitude
8

solar beta
7

i
6

Vr
5

Vt
4

radius
3

R vector
2

True Anomaly
1

tangent velocity
[Vt]

t

radial velocity
[Vr]

out 9

[rho_earth]

out 8

[h]

out 7

[beta]

out 6

[i]

out 5

[Vr]

out 4

[Vt]

out 3

[r]

out 2

[R]

out 11

[long]

out 10

[lat]

out 1

[TA]

inclination

i

eccentricity

e

calculate altitude

radius altitude

Re
-C-

Long
[long]

Lat
[lat]

Keplerian Orbit
Propagation

Vo

Ro

R_eci

V_eci

Calculate Orbital
Elements

time

Re

incl

ecc

R

V

rho_earth

beta

TA

r

Vt

Vr

Lat

Long

fcn

[e]

[i]

 altitude
[h]

[TA]

time

[rho_earth]

[V]

[R]

[beta]

[i]

Vo

Ro

[V]

[R]

[r]

[e]
[r]

Calculate Altitude-Simulink Block

altitude
1

 Re
-C-

radius
1

Keplerian Orbit Propagation- Simulink Block

v
r

Satellite Position (Inertial)

a

V_eci
2

R_eci
1

rSat

norm 3

MATLAB
Function

To Workspace1
RTo Workspace

V

Product 1

Integrator 1

1
sxo

Integrator

1
sxo

Gain

-K-

Divide 1

Ro
2Vo

1

 83

Calculate Orbital Elements – Embedded Matlab Code

function [rho_earth,beta,TA,r,Vt,Vr,Lat,Long] =
fcn(time,Re,incl,ecc,R,V)
% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%
% This function computes the classical orbital elements
% from the state vector (R,V) using Algorithm 4.1. As well as
% other orbital parameters needed by the model.
%
% mu - gravitational parameter (mˆ3/sˆ2)
% R - position vector in the geocentric equatorial frame (m)
% V - velocity vector in the geocentric equatorial frame (m/s)
% r, v - the magnitudes of R and V
% vr - radial velocity component (m/s)
% H - the angular momentum vector (mˆ2/s)
% h - the magnitude of H (mˆ2/s)
% incl - inclination of the orbit (rad)
% N - the node line vector (mˆ2/s)
% n - the magnitude of N
% cp - cross product of N and R
% RA - right ascension of the ascending node (rad) not used

% E - eccentricity vector
% ecc - eccentricity (magnitude of E)
% eps - a small number below which the eccentricity is
% considered to be zero
% w - argument of perigee (rad) not used

% TA - true anomaly (rad)
% Vt - tangential velocity (m/s)
% Vr - radial velocity (m/s)
% rho_earth - earth anglular radius
% beta - beat angle (rad)
% Lat - Latitude of satellite (rad)
% Long - Longitude of satellite (rad)
% --
mu = 398.6004418e12; % m^3/s^2
eps = 1.0e-10;
r = norm(R);
v = norm(V);
vr = dot(R,V)/r;
H = cross(R,V);
h = norm(H);

% Calc inclination
%{
c = H(3)/h;
if (c < -1) && (c > 1)
 c = c - pi;
end
incl = acos(c);
%}
% Calc right ascension of the ascending node (rad)
N = cross([0 0 1],H);

 84

n = norm(N);

% Calc Eccentricity

E = 1/mu*((v^2 - mu/r)*R - r*vr*V);
%ecc = norm(E);

% True Annomoly
if ecc > eps
 c = dot(E,R)/ecc/r;
 if (c < -1) && (c > 1)
 c = c - pi;
 end
 TA = acos(c);
 if vr < 0
 TA = 2*pi - TA;
 end
else
 cp = cross(N,R);
 c = dot(N,R)/n/r;
 if (c < -1) && (c > 1)
 c = c - pi;
 end
 if cp(3) >= 0
 TA = acos(c);
 else
 TA = 2*pi - acos(c);
 end
end

% Calculate the tangential and radial velocities
Vt = h/r;
Vr = mu/h*ecc*sin(TA);

% Calculate earth angular radius
rho_earth = asin(Re/r);

% Beta calcs
wb_0 = 0;
ub_0 = 0;
wb_dot = (-9.9639/86400)*rho_earth^(3.5)*cos(incl)/(1-ecc^2)^2;
wb = (wb_0 + wb_dot*time)*pi/180;
gamma = 23.442*pi/180; %rad
ub_dot = (0.985648/86400)*pi/180; %rad
ub = ub_0+ub_dot*time;

beta = asin(sin(ub)*sin(gamma)*cos(incl) + ...
 cos(ub)*sin(incl)*sin(wb)-sin(ub)*cos(gamma)*sin(incl)*cos(wb));

% For Mag Calc --
% Calculate Earth Coordinate by Simulate the Earth's Rotation
% Track the movement of (0 Lat, 0 Long)
PhiE = time*2*pi/(23.93*3600);
ThetaE = 0;

 85

EarthCoord = [Re,ThetaE,PhiE];

% Calculate Sat Coordinate in Polar
X = R(1);
Y = R(2);
Z = R(3);

Theta = atan2(sqrt(X^2+Y^2),Z);
Phi = atan2(Y,X);

SatCoord = [r,Theta,Phi];

% Calculate Lat and Long
Theta0 = pi/2-SatCoord(2);
Phi0 = SatCoord(3);

Phi1 = EarthCoord(3);

Lat = Theta0;
Long = (Phi0-Phi1);

if Long > pi
 Long = Long-2*pi;
end
if Long < -pi
 Long = Long+2*pi;
end

 86

Environmental Effects- Simulink Block

Eclipse
5

Inertial Sun Vector
4

Body Sun Vector
3

Magnetic Field
2

rho _a
1

set output to 0
if crho /cbeta >1

rho*1.5^(cBcTA)

u(1)*1.5^u(2)

[C_NE]
[C_EN]

[cB]
[cTA]

cb*cTA

S_hat 1

C_BO

C_NB

beta

TA

S_body

S_inertial

S

Product 1

Matrix
Multiply

Product

Matrix
ultiply

Magnetic Dipole Model

R B_eciEarth_Mag _Field
[b]

EarthRotation

time

C_EN

C_NE

ECI_2_ECEF

Divide

Density vs . altitude
lookup table

x

xdat

ydat

y

Compare
To Zero

>= 0

time

[nS_hat]

[eclipse]

[bS_hat]

[b]

[rho_a]

 density data
-C-

 altitude reference
-C-

 Earth Rotation
Rate

-C-

[eclipse]

[bS _hat]

[nS _hat]

[C_NE]

[cB]

[cTA]

cos

[C_EN]

cos

[rho _a]

<= 1

cos

earth angular
radius

7

TA
6

beta
5

C_BO
4

C_NB

3

R
2

altitude
1

 87

EFI_2_ECEF-Embedded Matlab Code

function [C_EN,C_NE]= ECI_2_ECEF(EarthRotation,time)
% transformation of eci to ecef coordinates

theta = EarthRotation(3)*time;

C_EN = [cos(theta) -sin(theta) 0;
 sin(theta) cos(theta) 0;
 0 0 1];
C_NE =C_EN';

Magnetic Dipole Model - Embedded Matlab Code
function B_eci = Earth_Mag_Field(R)
% Magnetic dipole model - in Tesla

theta = 11.7; % deg
DCM = [1 0 0; 0 cosd(theta) sind(theta); 0 -sind(theta) cosd(theta)]';
mu0 = 4*pi*10e-7; % N/Amp^2
M = DCM*[0 0 8e22]'; % A*m^2

r = norm(R);
r_hat = R/r;

B_eci = mu0*(3*dot(M,r_hat)*r_hat-M)/(4*pi*r^3);

S_hat1 – Embedded Matlab Code

function [S_body,S_inertial] = S(C_BO,C_NB,beta,TA)
% This block supports an embeddable subset of the MATLAB language.
% See the help menu for details.

B=beta;

S_orbit = [cos(B)*sin(TA);...
 sin(B);...
 cos(B)*cos(TA)];

S_body = C_BO*S_orbit;

S_inertial = C_NB*S_body;

 88

Dynamics and Kinematics - Simulink Block

C_NB
7

EulerBN 321
6

w_BN
5

EulerBO 321
4

q_BO
3

q_BN
2

C_BO
1

Kinematics

omega_BN

omega_ON

C_BO

q_BN

q_BO

EulerBO321

EulerBN321

C_NB

Attitude Dynamics

Torques

Moments of Inertia

initial inertial body rates

omega of orbit in inertial

w_BN

w_ON

omega of orbit in inertial
5

Initial inertial body rates
4

Moments of Inertia
3control torque

2

disturbance torque
1

Attitude Dynamics - Simulink Block

w_ON
2

w_BN
1

omega

1
sxo

Torques to Angular Accel

T
J

W

Wdottorque 2omegadot
To Workspace

Wdot

omega of
orbit in inertial

4

initial inertial body rates
3

Moments
of

Inertia

2

Torques
1

 89

torque2omegadot.m EML

function Wdot = torque2omegadot(T, J, W)

% This function takes input of applied torque (T) in component
% elements, current angular velocity (W) in component
% elements, and the moment-of-inertia matrix (J) as a diagonal
% matrix containing the MOIs for the principal axes of the body
% along the diagonal. Angular acceleration is then computed and
% output as a 3x1 vector (Wdot).

Wx = W(1); Wy = W(2); Wz = W(3);
Jxx = J(1,1); Jyy = J(2,2); Jzz = J(3,3);
Tx = T(1); Ty = T(2); Tz = T(3);

wdotx = (Tx-(Jzz-Jyy)*Wz*Wy)/Jxx;
wdoty = (Ty-(Jxx-Jzz)*Wx*Wz)/Jyy;
wdotz = (Tz-(Jyy-Jxx)*Wy*Wx)/Jzz;

Wdot = [wdotx; wdoty; wdotz];

 90

Disturbance Torques– Simulink Block

Td
1

solar

Tsolar

gravity gradient

Tgg

aerodynamic

Taero

Tsolar toggle

-K-

Torque
Solar

solar vector

Eclipse

Tsolar

Torque
Gravity Gradient

C_BO

r

J

mu

TggT_Grav_Grad

Torque
Aerodynamic

C_BO

Vt

Vr

rho_a

Taero

Tgg toggle

-K-

Taero toggle

-K-

rho_a
9

Eclipse
8

solar vector
7

Radial Velocity
6

Tangential Velocity
5

mu
4

J_Matrix
3

radius
2

C_BO
1

 91

Torque Gravity Gradient – EML

function Tgg = T_Grav_Grad(C_BO, r, J, mu)
% T_Grav_Grad takes inputs of the spacecraft inertia matrix (J),
% current orbit radius (r) in m, and the Orbit-to-Body Frame DCM (C_BO)
% to calculate the gravity gradient torque in the body frame (Tgg) and
% orbit frame (T_o). The orb_vec vector defines which orbit frame axis
% is aligned with the force producing the torque. In this case, the z-
axis
% points along nadir in the orbit frame, and corresponds to the r-
vector
% direction.

orb_vec = [0; 0; 1];

c = C_BO*orb_vec;

Jxx = J(1,1);
Jyy = J(2,2);
Jzz = J(3,3);

Tgg = 3*mu/r^3*[(Jzz-Jyy)*c(2)*c(3);...
 (Jxx-Jzz)*c(1)*c(3);...
 (Jyy-Jxx)*c(1)*c(2)];

Torque Aerodynamic – Simulink Block

Taero
1

Determine normalized
velocity vector in body

frame and V ^2

C_BO

V orbit

Vhat in Body

V 2̂ in Body

Calucate aero torque
by element side and

sum for total

velocity 2̂

density

normalized velocity

Taero

 V_normalized
3x1

[Vhat]

 V^2 term
scalar

[V2]

[V2]

[Vhat]
0

rho _a
4

Vr
3

Vt
2

C_BO
1

 92

Determine Normalized Velocity Vector – Simulink Block

V^2 in Body
2

Vhat in Body
1

normalize

MATLAB
Function

convert to
magnitude

Product 1
Product

Matrix
Multiply

V orbit
2

C_BO
1

Calculate Aero Torque – Simulink Block

Taero
1

Zp

V Out1

Zn

V Out1

Yp

V Out1

Yn

V Out1

Xp

V Out1

Xn

V Out1

Sum of
Elements

Product

3x3 Cross Product

A

B

C
Cross

Product
C = AxB

-1/2*rho*Cd term

-K-

normalized
velocity

3

density
2

velocity ^2
1

 93

Solar Torque – Simulink Block

Tsolar
1

Switch
Calculate Solar

Torque from side elements

s_body Tsolar

0

Eclipse
2

solar vector
1

Calculate Solar Torque – Simulink Block

Tsolar
1

Zp

V Out1

Zn

V Out1

Yp

V Out1

Yn

V Out1

Xp

V Out1

Xn

V Out1

Sum of
Elements

Gain

-K-

3x3 Cross Product

A

B

C
Cross

Product
C = AxB

s_body
1

 94

Sensors – Simulink Block

Bm
5

b_s
4

q_BNm
3

bias
2

w_BNm
1

[q_BN]

[B]

Sun Sensors

qbn

Sn

eclipse

b_s

Star Tracker

EulerBN

q_BN

q_BNm

Magneto -
meter Model

B B_sense

Mag Inertial
to Body

q_BN

b
B

Gyro

W_true

Omega_g

bias

[q_BN]

[q_BN]

[q_BN]

b
6

eclipse
5

Sn
4

q_BN
3

EulerBN 321
2

w_BN
1

 95

Gyro – Simulink Block

Biasbias

2

Omega _g
1

Scaling 1

K*u

Scaling K*u
ScaleFactor

MissAignment

K*u

RRW1

Integrator 1

1
s

xo

Gyro Rates

w_BNs

Bias

GYRO _Bias

ARW

+/-75 deg /s
W_true

1

Star Tracker – Block Diagram

q_BNm
1

q_m

q_m

u

qbn qStarTracker

ST Noise

q_BN2

EulerBN
1

 96

Star Tracker – Embedded Matlab Code

function q = StarTracker(u,qbn)

ph=u(1)/2; th=u(2)/2; ps=u(3)/2;

sph = sin(ph); sth = sin(th); sps = sin(ps);
cph = cos(ph); cth = cos(th); cps = cos(ps);

q = [sph*cth*cps-cph*sth*sps;
 cph*sth*cps+sph*cth*sps;
 cph*cth*sps-sph*sth*cps;
 cph*cth*cps+sph*sth*sps];

[Y I]=max(abs(q));
q=q/norm(q)*sign(q(I,1)/qbn(I,1));

Sun Sensors – Block Diagram

C_BN

b_s
1

ss4

ss2

ss3
ss1

ss2

SS2s

ss1

SS1s

q_BN * S_N2

Matrix
Multiply

q_BN * S_N1

Matrix
Multiply

Sun Sensor facing YO 1

S_hat S_mes

Sun Sensor facing YO

S_hat S_mes

Product

Matrix
Multiply

Matrix
Concatenation

2

DCM for
Sun Sensor 2

DCM1

DCM for
Sun Sensor 1

DCM1

ATT

quat attATT

eclipse
3

Sn
2

qbn
1

ATT.m
function att = ATT(quat)
att = transpose(XI(quat)) * PSI(quat);
return

 97

Sun Sensor Facing YO – Simulink Block

Ss

S_mes
1

Lookup
Table (2-D)

SS1> sqrt(1-FOV)

S_hat
1

Sun Sensor Facing YO1 – Block Diagram

Ss

R

Ss

S_mes
1

norm 2

f(u)

n

SS_n2

Lookup
Table (2-D)

Logical
Operator

AND SS2
Dot Product Compare 1

> 0

Compare

<= FOV

S_hat
1

 98

Mag Inertial to Body – Simulink Block

MAGNETIC FIELD TRANSFORMATION from INERTIAL to BODY COORDINATES

B

1

Product

Matrix
Multiply

ATT

quatatt ATT

b

2

q_BN

1

Magnetometer Model – Simulink Block

B_sense
1

Scope 1 Scope

SF_MA

K*u

Random
Number

EKF Mag Field

Bs

B
1

 99

Multiplicative Quaternion Extended Kalman Filter- Simulink Block

Pnorm
5

Pdiag
4

bias_f
3

q_BNf
2

w_BNf
1

norm

ATLAB
unction

mag _on
1

diag

ATLAB
unction

ST_on

0

wk1t

q_init

bias_init

Bk1

B

dt

sig

wk1

qk1

biask1

Pk1

EKF

[Flag]

Generate Measurment
Flag Vector

ST_on

SS1_on

SS2_on

MG_on

Flag

Gain 1

0Gain

0

SS2

SS1

sig

t_ekf

bias_init
5

q_init
4

b
3

Bm
2

w_BN
1

 100

MEKF – Embedded Matlab Code

function [wk1,qk1,biask1,Pk1] = EKF(wk1t,q_init,bias_init,Bk1,B,dt,sig)

sig_v = sig(1);
sig_u = sig(2);
sig_mag = sig(5);

persistent qk biask wk Pk;
% Initialize States and Measurement
if isempty(qk)
 qk=q_init;
 biask = bias_init;
 wk = wk1t;
 Pk=[(0.8)^2*eye(3) zeros(3); zeros(3) (3*pi/180)^2*eye(3)];

 wk1=wk;
 qk1=qk;
 biask1=biask;
 Pk1=Pk;
 return;
end

%% Propagation
biask1 = biask;

Skew_w = SKEW(wk);
Mag_w = norm(wk);

psik = (sin(1/2*Mag_w*dt)/Mag_w)*wk;
Omega = [cos(1/2*Mag_w*dt)*eye(3)-SKEW(psik) psik;
 -psik' cos(1/2*Mag_w*dt)];
qk1 = Omega*qk;

Phi_11 = eye(3)-Skew_w*sin(Mag_w*dt)/Mag_w + Skew_w^2*(1-
cos(Mag_w*dt))/Mag_w^2; % 7.59b
Phi_12 = Skew_w*(1-cos(Mag_w*dt))/Mag_w^2 - eye(3)*dt -...
% 7.59c
 Skew_w^2*(Mag_w*dt-sin(Mag_w*dt))/Mag_w^3;
Phi_21 = zeros(3);
% 7.59d
Phi_22 = eye(3);
% 7.59e

Phi = [Phi_11 Phi_12; Phi_21 Phi_22];
% 7.59a

Gk = [-eye(3) zeros(3); zeros(3) eye(3)];
Qk = [(sig_v^2*dt+1/3*sig_u^2*dt^3)*eye(3) -(1/2*sig_u^2*dt^2)*eye(3)
;

 101

 -(1/2*sig_u^2*dt^2)*eye(3) (sig_u^2*dt)*eye(3)
];

Pk1 = Phi*Pk*Phi'+Gk*Qk*Gk';

%% Update Loop ---
Att = ATT(qk1);
delX = zeros(6,1);
% Update for Magnetometer Measurement -------------------------------
H = [SKEW(Att*B) zeros(3,3)];

R = sig_mag^2*eye(3);

% Gain
K = (Pk1*H')/(H*Pk1*H' + R);

% Update
Pk1 = (eye(6) - K*H)*Pk1;

res = Bk1 - Att*B;
delX = delX + K*(res-H*delX);

qk1 = qk1+1/2*XI(qk1)*delX(1:3,:);
qk1 = qnormalize(qk1'*qk1,qk1);

biask1 = biask1 + delX(4:6,:);

wk1 = wk1t - biask1;
% Save previous values
qk = qk1;
biask = biask1;
wk = wk1;
Pk = Pk1;

return
%--

%% Normalizing routine for quaternions
function qk1 = qnormalize(qnorm,qk1)
while (qnorm) > 1
 if qnorm < 1 + 1e-9
 qk1 = ((3 + qnorm)/(1 + 3*qnorm))*qk1;
 % rescale quaternion to (err^3)/32
 else
 qk1 = qk1/sqrt(qnorm);
 % renormalize quaternion
 end
 qnorm = qk1'*qk1;
end
return
%--

 102

Unscented Kalman Filter – USQUE- Simulink Block

Pnorm _u
5

Pdiag _u
4

bias_f_u
3

q_BNf_u
2

w_BNf_u
1

norm

MATLAB
Function

diag

MATLAB
Function

wk1t

q_init

bias_init

Bk1

B

dt

sig

lambda

a

wk1

qk1

biask1

Pxx _k1

UKF

1

1

sig

t_ekf

bias_init
5

q_init
4

b
3

Bm
2

w_BN
1

 103

UKF- USQUE– Embedded Matlab Code

function [wk1,qk1,biask1,Pxx_k1] =
UKF(wk1t,q_init,bias_init,Bk1,B,dt,sig,lambda,a)

%
===
==
% Initialization
%
===
==

% Variance of Sensors
sig_v = sig(1);
sig_u = sig(2);
sig_mag = sig(5);
f = 2*(a+1); % Ref [3] pg 6

persistent qk biask Pxx_k
% Initialize States and Measurement
if isempty(qk)
 qk=q_init;
 biask = bias_init;
 disp(q_init);
 disp(bias_init);
 Pxx_k=[(1)^2*eye(3) zeros(3); zeros(3) (3*pi/180)^2*eye(3)];
end

%
===
==
% Calculation of Sigma Points
%
===
==

Qbar_k = dt/2*[(sig_v^2-1/6*sig_u^2*dt^2)*eye(3) zeros(3) ;
% Ref [3] 42
 zeros(3) sig_u^2*eye(3)];

% Sigma points equations
x_k = [[0 0 0]'; biask];
Dx=size(x_k,1);
Dy=size(Bk1,1);
NSig=2*Dx+1;
sig_x=chol((Dx+lambda)*(Pxx_k+Qbar_k))'; % Ref
[3] 5a

 104

chi_sig_k=x_k*ones(1,NSig)+[zeros(Dx,1) sig_x -sig_x]; % Ref [3]
5a
chi_sig_k1=zeros(6,NSig); % Ref [3] 32
y_sig_k1=zeros(3,NSig);
q_k1=zeros(4,1);

for i=1:NSig

 del_q_k=delp2delq(chi_sig_k(1:3,i),a,f);
 q_sig_k = quaterr(del_q_k, qk);

 %
===
 % Propagate Forward the Quaternion (still in the loop!)
 %
===

 w_sig_k = wk1t - chi_sig_k(4:6,i); % Ref [3] 35
 Mag_w = norm(w_sig_k);
 psik = (sin(1/2*Mag_w*dt)/Mag_w)*w_sig_k;
 zk = cos(1/2*Mag_w*dt)*eye(3)-SKEW(psik);

 Omega = [zk, psik; % Ref [3] 29
 -psik', cos(1/2*Mag_w*dt)];

 q_sig_k1 = Omega*q_sig_k; % Ref [3] 34

 % =========================
 % Saving the q(-)k+1(0) % Ref [3] 36
 % =========================

 if i==1

 q_k1=q_sig_k1;
 end

 del_q_k1 = quaterr(q_sig_k1, [-q_k1(1:3,1);q_k1(4,1)]);
 chi_sig_k1(1:3,i) = f*del_q_k1(1:3,1)/(a+del_q_k1(4,1)); % Ref [3]
37b
 chi_sig_k1(4:6,i) = chi_sig_k(4:6,i);
 y_sig_k1(:,i) = ATT(q_sig_k1)*B;

 %
===
 % Note: The bias does not change so chi_sig_k1(4:6,i) stays the
same
 %
===

end

 105

 %
===
 % Following USQUE Method Ref [3] pg 6
 %
===

% Calculating Weights
R = sig_mag^2*eye(3);

W=ones(NSig,1)/(2*(Dx+lambda));
W(1,1)=lambda/(Dx+lambda);

% Mean Point Calculations
x_k1p=chi_sig_k1*W;
y_k1p=y_sig_k1*W;

%
===
==
% Covariance and Gain Calculations
%
===
==

% Error Covariance Calculation
Pxx_k1p=Qbar_k;
Pyy_k1p=R;
Pxy_k1p=zeros(Dx,Dy);

for i=1:NSig
 xdif=chi_sig_k1(:,i)-x_k1p;
 ydif=y_sig_k1(:,i)-y_k1p;
 Pxx_k1p=Pxx_k1p+xdif*xdif'*W(i,1);
 Pyy_k1p=Pyy_k1p+ydif*ydif'*W(i,1);
 Pxy_k1p=Pxy_k1p+xdif*ydif'*W(i,1);
end

% Gain and Update
K = Pxy_k1p/Pyy_k1p; % Gain

Pxx_k1 = Pxx_k1p-K*Pxy_k1p'; % Error Covariance Update
x_k1 = x_k1p+K*(Bk1-y_k1p); % State Update

% Calculation of Updated Quaternion!
del_q_k1=delp2delq(x_k1(1:3,:),a,f);
qk1 = quaterr(del_q_k1,q_k1);
qk1 = qnormalize(qk1);

 106

biask1 = x_k1(4:6,1);
wk1 = wk1t-biask1;

%
===
==
% Setup for Next Update
%
===
==

qk=qk1;
biask=biask1;
Pxx_k = Pxx_k1;

return
%
%
% %--

%% Normalizing routine for quaternions
function qk1 = qnormalize(qk1)
qnorm=qk1'*qk1;
while (qnorm) > 1
 if qnorm < 1 + 1e-9
 qk1 = ((3 + qnorm)/(1 + 3*qnorm))*qk1;
 % rescale quaternion to (err^3)/32
 else
 qk1 = qk1/sqrt(qnorm);
 % renormalize quaternion
 end
 qnorm = qk1'*qk1;
end
return
%--

 107

ADS_MainScript.m

%% Spacecraft Attitude Determination Script
% Note that this code runs both the EKF and the UKF

% Created by Orlando X. Diaz
% Advisor Dr. Marcelo Romano
% Co-Advisor Dr. Hyun-wook Woo

%% Format
 clear all
 close all
 clc

 global CONST
 R2D = 180/pi;
 D2R = pi/180;
%% Set Simulation Conditions

 InitialEuler = [0,0,0];%deg
 ReferenceEuler = [0 0 0];%deg

%*** Toggle switches turn the labeled functions on (1) or off (0).

 Tgg_toggle = 1;%
 Taero_toggle = 1;%
 Tsolar_toggle = 1;%
 timeOn = 1;
 taOn = 0;
 cboOn = 0;
 qbnOn = 1;
 qbnmOn = 1;
 rOn = 0;
 hOn = 0;
 e321On = 1;
 wbnOn = 1;
 tcOn = 0;
 hsOn = 0;
 wbnfOn = 1;
 biasOn = 1;
 biasfOn = 1;
 pdOn = 1;
 pnOn = 1;
 qbnfOn = 1;
 wbnmOn = 1;
 werrOn = 1;
 berrOn = 1;
 qerrOn = 1;

 108

%% Set Constants
 CONST.mu = 398.6004418e12;%m^3/s^2
 CONST.mu_moon = 4.902802953597e12;%m^3/s^2
 CONST.mu_sun = 1.327122E20;%m^3/s^2
 CONST.Re = 6.378137E6;%m earth radius
 CONST.Rs = 1.4959787e11;%m solar radius
 CONST.J2 = 1.08262668355E-3;% J2 term
 CONST.J3 = -2.53265648533E-6;% J3 term
 CONST.J4 = -1.61962159137E-6;% J4 term
 CONST.SolarPress= 4.51e-6;%N/m^2 solar wind pressure
 CONST.SOLARSEC = 806.81112382429;%TU
 CONST.w_earth = -[0;0;.0000729211585530];%r/s earth rotation
 CONST.Cd = 2.5;% Coefficient of Drag
 CONST.Cr = .6;% Coefficient of
Reflect
 CONST.OmegaDot = 1.991e-7;%rad/s ascending node
advance for sun-synch

%% Set Orbital Elements
 %Kep elements meters and radians (a,e,i,W,w,n)

 h_p = 500e3;%m altitude at perigee
 h_a = 500e3;%m altitude at apogee

 RAAN = 0;%rad Right Ascention
 w = 0;%rad argument of perigee
 TAo = 0;%rad true anomaly
 Rp = CONST.Re+h_p;%m radius of perigee
 Ra = CONST.Re+h_a;%m radius of apogee
 e = (Ra-Rp)/(Ra+Rp);%(m/m) eccentricity
 a = (Ra+Rp)/2;%m semi-major axis
 ho = sqrt(a*CONST.mu*(1-e^2));%mÿ2/s initial angular
momentum
 P = 2*pi*(a^3/CONST.mu)^.5;%sec Orbit Period
 i_sunsynch = acosd((CONST.OmegaDot*(1-e^2)^2*a^(7/2))...
 /(-3/2*sqrt(CONST.mu)*CONST.J2*CONST.Re^2));%eqn 4.47 from
Curtis
 i = i_sunsynch*D2R;%deg (rad) orbit inclination

 [Ro,Vo] = sv_from_coe(CONST.mu,[ho e RAAN i w TAo]);% initial
orbital state vector

%% Set ICs

w_BNo = [0;2*pi/P;0];%rad initial body rates
w_ON = [0;2*pi/P;0];%rad

rand('seed',2);
randn('seed',2);
seedarw=1;
seedrrw=2;
seedst=3;
seedmag=4;

 109

% Sensor parameters
% Gyro
GYRO_Bias = (3*randn(3,1))*pi/180; % + 3 deg/sec
N_ARW = (0.029)*pi/180;
K_RRW = (0.0002)*pi/180;
ARW = N_ARW^2; % angular white noise Variance
RRW = K_RRW^2/3; % bias variance
Gg = eye(3).*(-0.01+0.02*rand(3)) +...
 (ones(3,3)-eye(3)).*(-0.0006+0.0012*rand(3)); %percent

% Magnetometer
sigMag = 1.25e-7;
Gm = eye(3).*(-0.02+0.04*rand(3)) +...
 (ones(3,3)-eye(3)).*(-0.0028+0.0056*rand(3)); %percent

% Sun Sensor
S1 = [0 45 0]'*pi/180;
S2 = [45 0 0]'*pi/180;

SS_n1 = [1 0 0];
SS_n2 = [1 0 0];
FOV = 0.7;
sigSS = 0.1;
J = Bessel(sigSS/2,FOV).*pi/180;

% Star Tracker
sigST = 70 /3 /60 /60*pi/180; %arcsec to rad (3sig)

% Kalman Filter
dt = 0.05; %sec (20 Hz) model speed
t_ekf = dt; %sec (100 Hz) ekf speed
sig(1) = sqrt(ARW); %rad/Hz^(1/2), ARW
sig(2) = sqrt(RRW); %rad/sec^(3/2), RRW
sig(3) = sigST; %rad, Star Tracker Error
sig(4) = sigSS*pi/180; %rad, Sun Sensor Error
sig(5) = sigMag; %tesla, magnetometer error

ReferenceOmega = w_ON;

[qBOo] = Euler_to_Quaternion(InitialEuler);
[ReferenceQuaternion] = Euler_to_Quaternion(ReferenceEuler);

qBNo = qBOo;

%% Run Simulation
[Spacecraft]= SCproperties;

J_Matrix = Spacecraft.MOI;

[density_table] = GetDensity;

RunTime = 4000;%sec

 110

tic
sim('ADS_SpacecraftSim',RunTime);
Total_Model_time = toc
factor = RunTime/Total_Model_time

DisturbanceTorques.Tgg = Tgg;
DisturbanceTorques.Taero = Taero;
DisturbanceTorques.Tsolar = Tsolar;

SensorMeasurements.ST = q_BNm;
SensorMeasurements.Gyro = w_BNm;
SensorMeasurements.bias = bias;
SensorMeasurements.SS1 = ss1;
SensorMeasurements.SS2 = ss2;
SensorMeasurements.Mag = Bm;

FilterEst.Q = q_BNf;
FilterEst.Gyro = w_BNf;
FilterEst.bias = bias_f;

 111

PlotUKFError.m

bias_e_u1=squeeze(bias_e_u1);
[m,n]=size(bias_e_u1);
if m<n
 bias_e_u1=bias_e_u1';
end

for i=1:3
 figure(1)
 subplot(3,1,i)
 plot(SimTime1,p_BNe_u1(:,i))
 hold on
 plot(SimTime1,3*sqrt(Pdiag_u1(:,i)),'-.r')
 plot(SimTime1,-3*sqrt(Pdiag_u1(:,i)),'-.r')
 grid on
 xlim([0 4000])
 ylim([-.2 .2])
 xlabel('Time (Sec)')
 label=['\deltap' num2str(i)];
 ylabel(label)

end
subplot(3,1,2)
ylim([-.05 .05])
subplot(3,1,1)
title('Generalized Rodriquez Parameter Error for UKF')

for i=4:6
 figure(2)
 subplot(3,1,i-3)
 plot(SimTime1,bias_e_u1(:,i-3));
 hold on
 plot(SimTime1,3*sqrt(Pdiag_u1(:,i)),'-.r');
 plot(SimTime1,-3*sqrt(Pdiag_u1(:,i)),'-.r');
 grid on
 xlim([0 4000])
 ylim([-5E-4 5E-4])
 xlabel('Time (Sec)')
 label=['\delta \beta ' num2str(i-3)];
 ylabel(label)
end
subplot(3,1,1)
title('Bias Error for UKF')

bias_e_e1=squeeze(bias_e_e1);
[m,n]=size(bias_e_e1);
if m<n

 112

 bias_e_e1=bias_e_e1';
end
for i=1:3
 figure(3)
 subplot(3,1,i)
 plot(SimTime1,q_BNe_e1(:,i))
 hold on
 plot(SimTime1,3/2*sqrt(Pdiag1(:,i)),'-.r');
 plot(SimTime1,-3/2*sqrt(Pdiag1(:,i)),'-.r');
 grid on
 xlim([0 4000])
 ylim([-.15 .15])
 ylim([-.2 .2])
 xlabel('Time (Sec)')
 label=['\deltaq' num2str(i)];
 ylabel(label)

end
subplot(3,1,1)
title('Quaternion Error for EKF')
subplot(3,1,2)
ylim([-.02 .02])

for i=4:6
 figure(4)
 subplot(3,1,i-3)
 plot(SimTime1,bias_e_e1(:,i-3))
 hold on
 plot(SimTime1,3*sqrt(Pdiag1(:,i)),'-.r');
 plot(SimTime1,-3*sqrt(Pdiag1(:,i)),'-.r');
 grid on
 xlim([0 4000])
 ylim([-5E-4 5E-4])
 xlabel('Time (Sec)')
 label=['\delta \beta ' num2str(i-3)];
 ylabel(label)

end
subplot(3,1,1)
title('Bias Error for EKF')

clear norm_p_u norm_p_e norm_bias_u norm_bias_e
norm_p_u=zeros(m,1);
norm_p_e=zeros(m,1);
norm_bias_u=zeros(m,1);
norm_bias_e=zeros(m,1);
for i=1:m;
norm_p_u(i,1)=norm(p_BNe_u1(i,:));
norm_p_e(i,1)=norm(2*p_BNe_e1(i,:));
norm_bias_u(i,1)=norm(bias_e_u1(i,:));
norm_bias_e(i,1)=norm(bias_e_e1(i,:));
end

figure(5)

 113

semilogy(SimTime1,norm_p_u)
hold on
semilogy(SimTime1,norm_p_e,'-.r')
grid on
title('Normalized EKF and UKF Attitude Errors')
xlabel('Time (Sec)')
ylabel('Attitude Errors')
legend('Normalized UKF Generalized Rodriguez Parameter Errors',
'Normalized EKF Generalized Rodriguez Parameter Errors')
xlim([0 4000])

figure(6)
semilogy(SimTime1,norm_bias_u)
hold on
semilogy(SimTime1,norm_bias_e,'-.r')
grid on
title('Normalized EKF and UKF Bias Errors')
xlabel('Time (Sec)')
ylabel('Normalized \beta Errors')
legend('Normalized UKF Bias Errors', 'Normalized EKF Bias Errors')
ylim([0 .01])
xlim([0 4000])

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

LIST OF REFERENCES

[1] S. Flagg, R. White, and R. Ewart, “Operationally Responsive Space Specifications
and Standards: An Approach to Converging with the Community,” in AIAA Space
2007 Conference & Exposition, Long Beach, 2007, pp. 1–19.

[2] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman Filtering for Spacecraft
Attitude Estimation,” Journal of Guidance, Control and Dynamics, vol. 15, no. 5,
1982, pp. 417–429. AIAA-82-0070.

[3] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear Estimation,”
Proceedings of the IEEE, vol. 92, no. 3, 2004, pp. 401–422.

[4] J. L. Crassidis and F. L. Markley, “Unscented Filtering for Spacecraft Attitude
Estimation,” Journal of Guidance, Control and Dynamics, vol. 26, no. 4, 2003, pp.
536–542.

[5] J. Tuthill, “Design and Simulation of a Nano-Satellite Attitude Determination
System,” Naval Postgraduate School, Monterey, CA, Master's Thesis December
2009.

[6] L. Stras, D. D. Kekez, et al. “The Design and Operation of The Canadian
Advanced Nanospace eXperiment (CanX-1),” July 2004. [Online]. Available:
http://www.utias-sfl.net/nanosatellites/CanX1. [Accessed September 2010].

[7] “AISsat-l Monitoring the Shipping Traffic from Space.” NordicSpace Online
Journal, April 2004. [Online]. Available:
http://www.nordicspace.net/PDF/NSA238.pdf. [Accessed September 2010].

[8] M. D. Shuster and S. D. Oh, “Three-Axis Attitude Determination from Vector
Observations,” Journal of Guidance, Control and Dynamics, vol. 4, no. 1, 1981,
pp. 70–77. AIAA-81-4003.

[9] J. L. Crassidis and J. L. Junkins, “Optimal Estimation of Dynamic Systems,”
Goong Chen and Thomas J Bridges, Eds. New York, USA: Chapman & Hall/CRC,
2004.

[10] M. S. Grewel and A. A. Andrews, “Kalman Filtering: Theory and Practice Using
MATLAB®”. 3rd ed. John Wiley and Sons, 2008.

[11] F. Orderud, “Comparison of Kalman Filter Estimation Approaches for State Space
Models with Nonlinear Measurements.,” Sem Sælands vei, vol. 7491, pp. 7–9,
March 2006.

 116

[12] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. “A New Approach for
Filtering Nonlinear Systems.” In Proceedings of the 1995 American Control
Conference, 1628–1632, 1995.

[13] M. C. VanDyke, J. L. Schwartz, and C. D. Hall. “Unscented Kalman Filtering for
Spacecraft Attitude State and Parameter Estimation.” In Proceedings of the 2004
Space Flight Mechanics Meeting, AAS-04-115, 2004.

[14] A. J. Blocker, “Tinyscope: The Feasibility of a Tactically Useful, Three-Axis
Stabilized, Earth-Imaging Nano-Satellite,” Naval Postgraduate School, Monterey,
CA, Master's Thesis December 2008.

[15] B. Wei, “Space Vehicle Dynamics and Control.” AIAA Education Series, 1998.

[16] L. F. Markley, “Multiplicative vs. Additive Filtering for Spacecraft Attitude
Determination.” July 2004. [Online]. Available:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov. [Accessed June 3, 2010].

[17] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter to
Nonlinear Systems,” In Proceedings of the SPIE AeroSense International
Symposium an Aerospace/Defense Sensing. Simulations and Controls, (Orlando,
Florida), April 20–25, 1997.

[18] H. Curtis, “Orbital Mechanics for Engineering Students, 2nd ed.” Elsevier’s
Butterworth–Heinemann 2005.

[19] D. Vallado, “Fundamentals of Astrodynamics and Applications, 2nd ed.” El
Segundo: Microcosm Press, 2004.

[20] R.C. Olsen, “Introduction to the Space Environment.” Monterey: Naval
Postgraduate School, 2005.

[21] W. Larson and J. R. Wertz, “Space Mission Analysis and Design, 3rd ed.” El
Segundo: Microcosm Press, 2005.

[22] E. Kraft, “A Quaternion-based Unscented Kalman Filter for Orientation Tracking,”
Proceedings of the 6th International Conference on Information Fusion, Cairns,
Australia, 2003, pp. 47–54.

[23] C. C. Litton, “Tinyscope: The Feasibility of a Tactically Useful Earth-Imaging
Nanosatellite and a Preliminary Design of the Optical Payload,” Naval
Postgraduate School, Monterey, CA, Master's Thesis January 2009.

 117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

